1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Surgical strategies for osteotomy correction of severe lower limb deformities in hypophosphatemic rickets.
Shaofeng JIAO ; Sihe QIN ; Zhenjun WANG ; Yue GUO ; Hongsheng XU ; Zhijie LIU ; Shilong WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):701-707
OBJECTIVE:
To explore the corrective strategies and effectiveness of osteotomy surgery for severe lower limb deformities in hypophosphatemic rickets.
METHODS:
A retrospective analysis was conducted on 29 patients with severe lower limb deformities of hypophosphatemic rickets who underwent surgical treatment between February 2012 and August 2024. There were 9 males and 20 females. The age ranged from 13 to 53 years, with an average of 24.6 years. All patients were deformities of both lower limbs, presenting as 24 cases of O-shaped legs, 2 cases of wind-blown deformities, and 3 cases of X-shaped legs. Based on the full-length films of both lower limbs in the standing position before operation, the osteotomy planes of the femur, tibia, and fibula were designed. Among them, if both the same-sided thigh and leg were deformed, staged surgeries of both lower limbs were selected. If only the thigh or leg were deformed, simultaneous surgeries of both lower limbs were selected. The femur deformity was corrected immediately after osteotomy at the deformed plane; the osteotomy fragment was temporarily controlled with an external fixator, which was removed after perform internal fixation with a steel plate. After fibular osteotomy, the Ilizarov frame or Taylor frame was installed on the tibia and fibula. The threaded rods were removed and then tibial osteotomy was performed on the deformed plane. Patients using the Taylor frame did not undergo deformity correction during operation. The external fixators were adjusted starting 7 days after operation to correct the varus, valgus, and rotational deformities of the lower limb. Patients using the Ilizarov frame corrected the rotational deformity of the tibia during operation. The external fixator was adjusted starting 7 days after operation to correct the varus and valgus deformities of the lower limb. During the treatment period, the patient could walk with partial weight-bearing on the operated limb with crutches. The external fixator was removed after the bone healed. Before operation and at last follow-up, the medial proximal tibial angle (MPTA), lateral distal tibial angle (LDTA), posterior proximal tibial angle (PPTA), anterior distal tibial angle (ADTA), anatomic lateral distal femoral angle (aLDFA), posterior distal femoral angle (PDFA), and mechanical axis deviation (MAD), lower limb rotation, limb length discrepancy (LLD) were measured. The self-made scoring criteria were adopted to evaluate the degree of lower limb deformity of the patients.
RESULTS:
All operations were successfully completed, and no complications such as nerve or vascular injury occurred. The adjustment time of the external fixator of the lower limb after operation was 28-46 days, with an average of 37.4 days. The wearing time of the external fixator ranged from 134 to 398 days, with an average of 181.5 days. Mild pin tract infections occurred in 2 limbs. The osteofascial compartment syndrome occurred in 1 limb after operation. No complications related to orthopedic adjustment of the external fixator occurred in other patients. All patients were followed up 6-56 months, with an average of 28.2 months. At last follow-up, full-length films of both lower limbs in the standing position showed that the coronal mechanical axes of the lower limbs of all patients returned to the normal. At last follow-up, MPTA, LDTA, PPTA, aLDFA, PDFA, MAD, lower limb rotation, LLD, and the score of lower limb deformity significantly improved when compared with those before operation ( P<0.05). There was no significant difference in ADTA between pre- and post-operation ( P>0.05). The degree of lower limb deformity were rated as moderate in 2 cases and poor in 27 cases before operation and as excellent in 7 cases, good in 18 cases, and moderate in 4 cases at last follow-up, with an excellent and good rate of 86.2%.
CONCLUSION
For severe lower limb deformities in hypophosphatemic rickets, immediate correction of deformities with femoral osteotomy and internal plate fixation, as well as gradually correction of deformities with tibiofibular osteotomy and circular external fixation (Ilizarov frame or Taylor frame), have satisfactory therapeutic effects.
Humans
;
Male
;
Osteotomy/instrumentation*
;
Female
;
Adult
;
Retrospective Studies
;
Tibia/abnormalities*
;
Adolescent
;
Femur/abnormalities*
;
Middle Aged
;
Fibula/surgery*
;
Rickets, Hypophosphatemic/complications*
;
Young Adult
;
Treatment Outcome
;
External Fixators
;
Bone Plates
;
Lower Extremity Deformities, Congenital/etiology*
7.Expert consensus on the prevention and treatment of enamel demineralization in orthodontic treatment.
Lunguo XIA ; Chenchen ZHOU ; Peng MEI ; Zuolin JIN ; Hong HE ; Lin WANG ; Yuxing BAI ; Lili CHEN ; Weiran LI ; Jun WANG ; Min HU ; Jinlin SONG ; Yang CAO ; Yuehua LIU ; Benxiang HOU ; Xi WEI ; Lina NIU ; Haixia LU ; Wensheng MA ; Peijun WANG ; Guirong ZHANG ; Jie GUO ; Zhihua LI ; Haiyan LU ; Liling REN ; Linyu XU ; Xiuping WU ; Yanqin LU ; Jiangtian HU ; Lin YUE ; Xu ZHANG ; Bing FANG
International Journal of Oral Science 2025;17(1):13-13
Enamel demineralization, the formation of white spot lesions, is a common issue in clinical orthodontic treatment. The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment. The prevention, diagnosis, and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties. This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment, advocating for proactive prevention, early detection, timely treatment, scientific follow-up, and multidisciplinary management of white spot lesions throughout the orthodontic process, thereby maintaining the dental health of patients during orthodontic treatment.
Humans
;
Consensus
;
Dental Caries/etiology*
;
Dental Enamel/pathology*
;
Tooth Demineralization/etiology*
;
Tooth Remineralization
8.PLAGL1-IGF2 axis regulates osteogenesis of postnatal condyle development.
Jinrui SUN ; Jingyi XU ; Yue XU ; Yili LIU ; Enhui YAO ; Jiahui DU ; Xinquan JIANG
International Journal of Oral Science 2025;17(1):65-65
The mandibular condyle is a critical growth center in craniofacial bone development, especially during postnatal stages. Postnatal condyle osteogenesis requires precise spatiotemporal coordination of growth factor signaling cascades and hierarchical gene regulatory networks. Plagl1, which encodes a zinc finger transcription factor, is a paternally expressed gene. We demonstrate that PLAGL1 is highly expressed in cranial neural crest cell (CNCC)-derived lineage cells in mouse condyles. Using the CNCC-derived lineage-specific Plagl1 knockout mouse model, we evaluate the function of PLAGL1 during postnatal mouse condyle development. Our findings show that PLAGL1 contributes significantly to osteoblast differentiation, and its deficiency impairs osteogenic lineage differentiation, which consequently disrupts mandibular condyle development. Mechanistically, insulin-like growth factor 2 (IGF2) in complex with IGF-binding proteins (IGFBPs) has been identified as the principal PLAGL1 effector responsible for osteogenic regulation during postnatal condyle morphogenesis. Plagl1 deficiency significantly downregulates the IGF2/IGFBP pathway, leading to disordered glucose metabolism, defective extracellular matrix organization, and impaired ossification. Exogenous IGF2 treatment rescues impaired osteoblast differentiation caused by Plagl1 deficiency. In conclusion, the PLAGL1-IGF2 axis is a critical regulator of osteogenesis during mandibular condyle development.
Animals
;
Osteogenesis/genetics*
;
Insulin-Like Growth Factor II/metabolism*
;
Mice
;
Transcription Factors/metabolism*
;
Mice, Knockout
;
Cell Differentiation
;
DNA-Binding Proteins/genetics*
;
Mandibular Condyle/growth & development*
;
Osteoblasts/cytology*
;
Signal Transduction
;
Neural Crest/cytology*
9.Inhibitory Effect of Sinomenine on Human Glioblastoma and Its Pharmacokinetic Characteristics
Yue JIAO ; Yumao JIANG ; Danqiao WANG ; Jingyi WANG ; Yang LIU ; Xiaoliang ZHAO ; Zhiguo WANG ; Tao LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):179-186
ObjectiveTo observe the inhibitory effect of sinomenine on human glioblastoma and its pharmacokinetic characteristics in glioblastoma. MethodA human glioblastoma U87 cell line stably expressing luciferase was constructed, and a mouse glioma model was established for use in both pharmacodynamic and pharmacokinetic studies. Pharmacodynamics: Model mice were randomly divided into model group and sinomenine low-, medium-, and high-dose groups (50, 100, 150 mg·kg-1). Sinomenine was administered intraperitoneally for 14 days. The fluorescence value of brain tumors was observed to analyze its inhibitory effect on glioblastoma proliferation. Brain tumors and the surrounding brain tissue were collected, and the expression levels of vascular endothelial growth factor A (VEGFA), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and Occludin were detected by Western blot. Pharmacokinetics: Mice were divided into a normal group (50 mg·kg-1) and model groups (50, 100, 150 mg·kg-1). After a single intraperitoneal injection of sinomenine, extracellular fluid from brain tumors was collected in vivo by microdialysis every 15 min for 6 h. Sinomenine concentrations in the dialysate were detected by HPLC-MS/MS, and pharmacokinetic parameters were calculated to analyze pharmacokinetic characteristics of sinomenine in the brain and glioblastoma. ResultCompared with model group, after 14 days of sinomenine administration, the fluorescence value of brain tumors significantly decreased (P<0.05) in a dose-dependent manner. Sinomenine inhibited the increase in VEGF and the degradation of Occludin in the tissue surrounding the tumor and inhibited the expression of VEGF, P-gp, and BCRP in glioblastoma. After a single administration, sinomenine was detected in brain and tumor tissues within 7.5 min. Compared with normal group, the Cmax and AUC in the tumor significantly increased, Tmax shortened (from 1.63 h to 0.71 h), and CLz/F decreased. In the dose range of 50-150 mg·kg-1, sinomenine exhibited a linear pharmacokinetic process in glioblastoma. ConclusionSinomenine has a significant inhibitory effect on glioblastoma, which can inhibit VEGF elevation and drug transporter efflux, reduce tumor invasion, and maintain the integrity of the blood-brain barrier. Sinomenine can rapidly cross the blood-tumor barrier, reach peak concentration, and exhibit linear pharmacokinetic characteristics in the tumor.
10.The material basis and mechanism of action of anti-inflammatory effects of simplified Zhiqin Decoction
Kun WANG ; Yang LIU ; Yue YIN ; Xiao XIAO ; Xue-jiao ZHOU ; Zhi-ying YUAN ; Liang-hong YE ; Xiao-yu XU
Acta Pharmaceutica Sinica 2024;59(8):2245-2254
The anti-inflammatory effect of simplified Zhiqin Decoction was observed by using lipopolysaccharide (LPS)-induced inflammation mouse model. The main chemical constituents and the main mechanism of action of simplified Zhiqin Decoction were predicted by network pharmacology. Animal experiments verified the anti-inflammatory mechanism of simplified Zhiqin Decoction (this experiment was approved by the Animal Experiment Ethics Committee of Southwest University, approval number: IACUC-20210825-02). Simplifying Zhiqin Decoction has a significant anti-inflammatory effect on inflammatory mice, can significantly improve the overall macro shape of mice, reduce body temperature, water intake, increase the number of autonomous activities; alleviate liver, lung, spleen, thymus inflammation and pathological damage; decrease tumor necrosis factor-

Result Analysis
Print
Save
E-mail