1.Effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus progression based on the "moderate fire generating qi, hyperactive fire consuming qi" theory
Yuying ZHANG ; Weiyu HUANG ; Haoyu YUAN ; Baohua WANG ; Saimei LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):14-20
This study examined the effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus (T2DM) progression based on the traditional Chinese medicine theory that " moderate fire generating qi, hyperactive fire consuming qi" . T2DM is closely associated with chronic low-grade inflammation, with islet macrophages playing a central role in this process. Under physiological conditions, islet macrophages secrete anti-inflammatory and growth factors to regulate the immune response, promote cell proliferation, and support islet β-cell survival and function, reflecting the concept of " moderate fire generating qi" . However, during the pathological process of T2DM, islet macrophages become over-activated and dysfunctional, secreting large amounts of pro-inflammatory factors that trigger severe inflammatory responses and oxidative stress. This process damages islet β-cells, disrupts the islet microenvironment and blood supply, exacerbates local inflammation and structural damage, and worsens the survival environment of β-cells. Ultimately, this leads to fewer β-cells and function loss, aligning with the " hyperactive fire consuming qi" theory, where excessive fire depletes qi and blood. This study enhances the understanding and application of traditional Chinese medicine theories in modern medicine, offering a new perspective on T2DM prevention and treatment. Regulating islet macrophage function and reducing their pro-inflammatory responses may become key strategies for preserving β-cell function and slowing T2DM progression.
2.Monitoring and analysis of 16 mycotoxins in corn samples from Heilongjiang Province in 2022
Yuan WANG ; Xiaojing WANG ; Lan ZHAO
Journal of Public Health and Preventive Medicine 2025;36(1):144-147
Objective To understand the situation of corn mycotoxins contamination in Heilongjiang Province , and to analyze the causes of pollution and propose prevention and control measures. Methods Among the 473 corn samples were collected from various regions in Heilongjiang Province , and 16 mycotoxins , including aflatoxins , fumonisins, deoxynivalenol and their metabolites , zearalenone , ochratoxin A , alternariol , alternariol monomethyl ether , tentoxin , and tenuazonic acid , were detected in the corn samples. The detection and quantification were carried out using ultra-high performance liquid chromatography tandem mass spectrometry isotope internal standard method. Results All samples were detected with mycotoxins, the detection rate was 100%, and each sample was contaminated by one or more mycotoxins. The detection rate of 16 mycotoxins ranged from 0.21% to 98.31%. The average contamination level ranged from 0.67 μ g/kg-259.19 μ g/kg. Three types of toxins exceeded the standard, with exceeding rates of deoxynivalenol (2.54%, 12/473), zearalenone (4.02% ,19/473), and fumonisins (2.54%,12/473), respectively. The samples exceeding the standard were distributed in Mudanjiang, Shuangyashan, Jixi, Harbin, and Qiqihar. Conclusion Corn in Heilongjiang Province is contaminated by a combination of mycotoxins. It is necessary to strengthen monitoring from multiple links and adopt a variety of ways and control measures to reduce corn contamination.
3.Treatment for Attention Deficit Hyperactivity Disorder from the Perspective of "Fire" Based on the Dynamic and Static Concept of Traditional Chinese Medicine
Kangning ZHOU ; Zhenhua YUAN ; Qiang ZHANG ; Junhong WANG
Journal of Traditional Chinese Medicine 2025;66(4):349-353
From the perspective of dynamic and static concept in traditional Chinese medicine, we explored the pathogenesis and treatment of attention deficit hyperactivity disorder (ADHD). ADHD is categorized into "dynamic type" and "static type" based on symptom presentation. It is believed that the core disease mechanism of static type ADHD refers to insufficiency of essence and blood, as well as the loss of nourishment of brain marrow and heart blood; the dominant mechanism of dynamic type ADHD refers to excessive use of the mind and improper diet lead to the excessive movement of dragon-thunder fire (symbolizing hyperactivity). The treatment should first differentiate between static type and dynamic type. The treatment for static type focuses on the spleen and kidney, and involves replenishing the acquired constitution to nourish the congenital, supporting the heart and spirit, and enriching the brain and marrow, so as to ensure sufficient qi and blood, abundant essence and strong spirit, thereby improving symptoms of attention deficits. The dynamic type should be treated by static method, and involves using calming medicinals to supplement, transform, and subdue to reach the aims of enriching yin and subduing yang, warming and supplementing the spleen and kidney, which helps restore the dragon-thunder fire to its balance. Based on the physiological characteristics of children, a dynamic-static differentiation and treatment system is established to provide a reference for the clinical treatment of ADHD.
4.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
5.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
6.Flavonoids from Corn Silk (Zea mays L.) and its pharmacological effects
Licheng ZHOU ; Yiming OU ; Yuan WANG
Journal of Pharmaceutical Practice and Service 2025;43(2):51-58
Corn silk, a Traditional Chinese Medicine, has the effect of calming liver, cholagogue, detumescence and diuresis. Corn silk is also widely used as tea and functional food. Natural flavonoids have multiple biological activities, which are also the main bioactive components of corn silk. In the past decade, many new advances have been made in the chemistry, analysis, pharmacology, pharmacokinetics, and safety evaluation of corn silk flavonoids. The chemical composition research of flavonoids has enriched the variety of flavonoids in corn silk. Pharmacological studies have confirmed and expanded the efficacy of corn silk flavonoids. And safety evaluation has provided a theoretical basis for the safe application of corn silk flavonoids. Through literature search, the extraction, separation, compositional analysis, content determination, pharmacological effect, pharmacokinetics, and safety research progress of corn silk flavonoids in the past ten years were reviewed in this paper.
7.Exploring the Correlation between Pyroptosis and Immune Microenvironment Dysregulation in Rheumatoid Arthritis from the Perspective of "Ying Decline and Wei Attack"
Yancun LI ; Shu ZHU ; Yuhan WANG ; Yuan QU ; Yuan LIU ; Ping JIANG
Journal of Traditional Chinese Medicine 2025;66(5):464-467
As a complex autoimmune disease, rheumatoid arthritis (RA) involves immune microenvironment dysregulation resulting from excessive activation of pyroptosis, which is a crucial factor in disease progression. Based on the theory of ying-wei in traditional Chinese medicine, "ying decline and wei attack" is considered the fundamental pathogenesis of RA. Pyroptosis serves as a microscopic manifestation of this concept, suggesting a potential correlation between "ying decline and wei attack" and pyroptosis nd immune microenvironment dysregulation in RA. Accordingly, treatment principles based on this theory are proposed: in the early stage of the disease, boosting wei to consolidate the exterior, and regulating ying to dispel pathogens; in the middle and late stages, harmonizing ying to remove stagnation, and nourishing its transformational source.
8.Safety analysis of Yttrium-90 resin microsphere selective internal radiation therapy on malignant liver tumors
Jia CAI ; Shiwei TANG ; Rongli LI ; Mingxin KONG ; Hongyan DING ; Xiaofeng YUAN ; Yuying HU ; Ruimei LIU ; Xiaoyan ZHU ; Wenjun LI ; Haibin ZHANG ; Guanwu WANG
Chinese Journal of Clinical Medicine 2025;32(1):24-29
Objective To explore the safety of Yttrium-90 resin microsphere selective internal radiation therapy (90Y-SIRT) on malignant liver tumors. Methods A retrospective analysis was conducted on 64 patients with malignant liver tumors who underwent 90Y-SIRT from February 2023 to November 2024 at Weifang People’s Hospital. The clinical characteristics of the patients and the occurrence of adverse reactions after treatment were analyzed to assess the safety of 90Y-SIRT. Results Among the 64 patients, there were 52 males (81.25%) and 12 females (18.75%); the average age was (56.29±11.08) years. Seven patients (10.94%) had tumors with maximum diameter of less than 5 cm, 38 patients (59.38%) had tumors with maximum diameter of 5-10 cm, and 19 patients (29.68%) had tumors with maximum diameter of greater than 10 cm. There were 47 cases (73.44%) of solitary lesions and 17 cases (26.56%) of multiple lesions; 53 cases (82.81%) were primary liver cancers and 11 cases (17.19%) were metastatic liver cancers. Of the 64 patients, 63 successfully completed the Technetium-99m macroaggregated albumin (99mTc-MAA) perfusion test and received the 90Y-SIRT; one patient received 90Y-SIRT after the second 99mTc-MAA perfusion test due to a work error. The most common adverse reactions included grade 1 alanine aminotransferase (ALT) elevation in 26 cases (40.62%) and grade 2 in 2 cases (9.37%), grade 1 aspartate aminotransferase (AST) elevation in 27 cases (42.18%) and grade 2 in 7 cases (10.93%); grade 1 nausea in 17 cases (26.56%) and grade 2 in 6 cases (9.37%); grade 1 abdominal pain in 12 cases (18.75%), grade 2 in 5 cases (7.81%), and grade 3 in 1 case (1.56%); grade 1 vomiting in 11 cases (17.18%), grade 2 in 5 cases (7.81%), and grade 3 in 1 case (1.56%). Conclusion The adverse reactions of 90Y-SIRT for treating malignant liver tumors are mild, indicating good safety.
9.Characteristics of mitochondrial translational initiation factor 2 gene methylation and its association with the development of hepatocellular carcinoma
Huajie XIE ; Kai CHANG ; Yanyan WANG ; Wanlin NA ; Huan CAI ; Xia LIU ; Zhongyong JIANG ; Zonghai HU ; Yuan LIU
Journal of Clinical Hepatology 2025;41(2):284-291
ObjectiveTo investigate the characteristics of mitochondrial translational initiation factor 2 (MTIF2) gene methylation and its association with the development and progression of hepatocellular carcinoma (HCC). MethodsMethSurv and EWAS Data Hub were used to perform the standardized analysis and the cluster analysis of MTIF2 methylation samples, including survival curve analysis, methylation signature analysis, the association of tumor signaling pathways, and a comparative analysis based on pan-cancer database. The independent-samples t test was used for comparison between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. The Cox proportional hazards model was used to perform the univariate and multivariate survival analyses of methylation level at the CpG site. The Kaplan-Meier method was used to investigate the survival differences between the patients with low methylation level and those with high methylation level, and the Log-likelihood ratio method was used for survival difference analysis. ResultsGlobal clustering of MTIF2 methylation showed that there was no significant difference in MTIF2 gene methylation level between different races, ethnicities, BMI levels, and ages. The Kaplan-Meier survival curve analysis showed that the patients with N-Shore hypermethylation of the MTIF2 gene had a significantly better prognosis than those with hypomethylation (hazard ratio [HR]=0.492, P<0.001), while there was no significant difference in survival rate between the patients with different CpG island and S-Shore methylation levels (P>0.05). The methylation profile of the MTIF2 gene based on different ages, sexes, BMI levels, races, ethnicities, and clinical stages showed that the N-Shore and CpG island methylation levels of the MTIF2 gene decreased with the increase in age, and the Caucasian population had significantly lower N-Shore methylation levels of the MTIF2 gene than the Asian population (P<0.05); the patients with clinical stage Ⅳ had significantly lower N-Shore and CpG island methylation levels of the MTIF2 gene than those with stage Ⅰ/Ⅱ (P<0.05). Clinical validation showed that the patients with stage Ⅲ/Ⅳ HCC had a significantly lower methylation level of the MTIF2 gene than those with stage Ⅰ/Ⅱ HCC and the normal population (P<0.05). ConclusionN-Shore hypomethylation of the MTIF2 gene is a risk factor for the development and progression of HCC.
10.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.


Result Analysis
Print
Save
E-mail