1.Platelet-rich plasma and hydrogel for spinal cord injury
Wenqi ZHAO ; Haichi YU ; Yiru SONG ; Tianyang YUAN ; Qinyi LIU
Chinese Journal of Tissue Engineering Research 2025;29(10):2189-2200
BACKGROUND:A large number of articles have reported the effect and mechanism of platelet-rich plasma and hydrogel in the treatment of spinal cord injury,but few articles have summarized their treatment strategies for spinal cord injury. OBJECTIVE:To summarize the pathological process of spinal cord injury and the strategies of repairing spinal cord injury with platelet-rich plasma and hydrogel alone and in combination. METHODS:PubMed and CNKI databases were searched for articles published from inception to March 2024 by computer.The Chinese search terms were"spinal cord injury,platelet-rich plasma,hydrogel."The English search terms were"spinal cord injury,spinal cord,platelet-rich plasma,hydrogel,angiogenesis,neuralgia,combination therapy."Articles were screened according to inclusion and exclusion criteria,and 128 articles were finally included for review and analysis. RESULTS AND CONCLUSION:(1)The classification of platelet-rich plasma is complex and diverse,and the effects of platelet-rich plasma in the repair treatment of spinal cord injury are various,but they all show certain positive effects,that is,they can promote axon regeneration,stimulate angiogenesis,and treat neuropathic pain and so on.(2)The effect of platelet-rich plasma is mainly due to the growth factors contained in platelet-rich plasma.(3)There are many types of hydrogels,which mainly play the role of filling,simulating extracellular matrix,carrying drugs and biological products,and carrying cells as scaffolds in the repair treatment of spinal cord injury.(4)Compared with single therapy,combination therapy of platelet-rich plasma and hydrogel can promote nerve regeneration and spinal cord function recovery more effectively.
2.Repetitive trans-spinal magnetic stimulation promotes motor function recovery in mice after spinal cord injury
Haiwang SONG ; Guanhua JIANG ; Yingying MU ; Shanyu FU ; Baofei SUN ; Yumei LI ; Zijiang YU ; Dan YANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2252-2260
BACKGROUND:Repetitive trans-spinal magnetic stimulation(rTSMS)can inhibit inflammatory responses following spinal cord injury.rTSMS applies magnetic field stimulation to the spinal cord region to modulate neuronal excitability and synaptic transmission,thereby promoting plasticity and repair of the nervous system. OBJECTIVE:To observe the effects of rTSMS on the Toll-like receptor 4(TLR4)/nuclear factor(NF)-κB/NLRP3 signaling pathway after spinal cord injury and explore its mechanism in promoting motor function recovery. METHODS:Male C57BL/6J mice,SPF grade,were randomly divided into sham surgery group,spinal cord injury group,and rTSMS group.The latter two groups of mice were anesthetized and the T9 vertebral plate was removed using rongeur forceps to expose the spinal cord,and the spinal cord was clamped using a small aneurysm clip for 20 seconds to establish the spinal cord injury model.Mice in the rTSMS group underwent a 21-day rTSMS intervention starting on day 1 after spinal cord injury.The stimulation lasted 10 minutes per day,5 days per week with an interval of 2 days.Basso Mouse Scale scores were used to assess motor function recovery in mice after spinal cord injury at 1,3,7,14,and 21 days after spinal cord injury.Western blot was employed to detect the expression of AQP4,apoptotic factors Bax,Bcl-2,CL-Caspase-3,inflammatory factors tumor necrosis factor-α,interferon-γ,interleukin-6,interleukin-4,and the TLR4/NF-κB/NLRP3 signaling pathway related proteins in the injured spinal cord.Oxidative stress assay kit was used to measure the activity of superoxide dismutase,glutathione peroxidase,and malondialdehyde content at the site of spinal cord injury.Immunofluorescence staining was performed to detect the expression of neuronal nuclei(NeuN). RESULTS AND CONCLUSION:The Basso Mouse Scale score in the rTSMS group was significantly higher than that in the spinal cord injury group(P<0.05).Compared with the spinal cord injury group,the rTSMS group showed a reduction in spinal cord water content.The expression of AQP4 protein,malondialdehyde content,and expression of Bax,Bcl-2,CL-Caspase-3,tumor necrosis factor-α,interferon-γ,interleukin-6,and TLR4/NF-κB/NLRP3 signaling pathway related proteins were all decreased in the rTSMS group,while the activities of superoxide dismutase and glutathione peroxidase,as well as the expression of Bcl-2,interleukin-4,and NeuN,were all increased(P<0.05).These results suggest that rTSMS downregulates the expression of proteins related to the TLR4/NF-κB/NLRP3 signaling pathway,alleviating symptoms after spinal cord injury such as spinal cord edema,oxidative stress,apoptosis,and inflammation,exerting neuroprotective effects,and thereby promoting the recovery of hindlimb motor function after spinal cord injury.
3.Modified Ditan Tang Regulates Biorhythm-related Genes in Rat Model of Non-alcoholic Fatty Liver Disease
Zhiwen PANG ; Yu LIU ; Nan SONG ; Jie WANG ; Jingxuan ZHU ; Zhen HUA ; Yupeng PEI ; Qun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):115-124
ObjectiveTo investigate the effects of modified Ditan tang on genes related to the transcription-translation feedback loop (TTFL) of biorhythm in the rat model of non-alcoholic fatty liver disease (NAFLD) and its mechanism for prevention and treatment of NAFLD. MethodsSixty-five healthy SPF male SD rats were randomly assigned into blank (n=20), model (n=15), and low-, medium-, and high-dose (2.68, 5.36, and 10.72 g·kg-1·d-1, respectively) modified Ditan tang (n=10) groups. Other groups except the blank group were fed a high-fat diet for 12 weeks. The modified Ditan tang groups were treated with the decoction at corresponding doses by gavage, and the blank and model groups were treated with an equal volume of normal saline from the 9th week for 4 weeks. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum were measured by an automatic biochemical analyzer. TG and non-esterified fatty acid (NEFA) assay kits were used to measure the levels of TG and NEFA in the liver. The pathological changes in the hypothalamus and liver were observed by hematoxylin-eosin staining, and the lipid deposition in the liver was observed by oil red O staining. The levels of brain-muscle ARNT-like protein 1 (BMAL1/ARNTL) in the hypothalamus and liver were determined by immunohistochemical staining. The mRNA and protein levels of BMAL1, circadian locomotor output cycles kaput (CLOCK), period circadian clock 2 (PER2), and cryptochrome1 (Cry1) in the hypothalamus and liver were determined by Real-time PCR and Western blot, respectively. ResultsCompared with the blank group, the model group showed elevated levels of TG, TC, LDL-C, AST, and ALT (P<0.01) and a lowered level of HDL-C (P<0.05) in the serum, elevated levels of TG and NEFA in the liver (P<0.01), pyknosis and deep staining of hypothalamic neuron cells, and a large number of vacuoles in the brain area. In addition, the model group showed lipid deposition in the liver, up-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.01), and down-regulated mRNA and protein levels of Cry1 and PER2 (P<0.01) in the hypothalamus and liver. Compared with the model group, all the three modified Ditan tang groups showed lowered levels of TG, TC, LDL-C, ALT, and AST (P<0.05, P<0.01) and an elevated level of HDL-C (P<0.05) in the serum, and lowered levels of TG and NEFA (P<0.05, P<0.01) in the liver. Furthermore, the three groups showed alleviated pyknosis and deep staining of hypothalamic neuron cells, reduced lipid deposition in the liver, down-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.05, P<0.01), and up-regulated mRNA and protein levels of Cry1 and PER2 (P<0.05, P<0.01) in the hypothalamus and liver. ConclusionModified Ditan tang can reduce lipid deposition in the liver and regulate the expression of CLOCK, BMAL1, Cry1, and PER2 in the TTFL of NAFLD rats.
4.Treatment Effect on Structure and Function of Submandibular Gland in Sjögren's Syndrome Model Mice by Artemisinin
Ziwei HUANG ; Qian HE ; Jiahe LIAO ; Xinbo YU ; Jing LUO ; Weijiang SONG ; Qingwen TAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):158-165
ObjectiveTo investigate the effects of artemisinin (ART) on histopathological damage and salivary secretion in the submandibular gland (SMG) of mice with Sjögren's syndrome (SS) model,and on the expression of aquaporin 5 (AQP5) in SMG cells. MethodsThe NOD/Ltj mice were used as a model of SS and randomly divided into the SS model group,the ART group,and the hydroxychloroquine sulfate (HCQ) group,with six mice per group. Another 6 female BALB/c mice at the same week were selected as the control group. Mice in the ART group was fed with the ART solution daily in the dosage of 50 mg·kg-1,and mice in the HCQ group was given with the HCQ solution (1 300 mg·kg-1). Mice in the SS model and control groups were given saline daily. The treatment lasted for 8 weeks. The 24-hour average water intake,salivary flow rate,SMG pathology scores of mice in each group were measured,as well as the expression levels of AQP5 protein and gene in the SMG tissues. ResultsCompared with the control group,the 24-hour average water intake of mice in the model group was significantly increased (P<0.01),and the saliva flow rate was significantly decreased (P<0.01). Compared to the SS model group,the 24-hour average water intake of mice in the ART and HCQ groups was significantly reduced (P<0.01),and the salivary flow rate was significantly increased in the ART group(P<0.01),comparisons between groups showed that the ART was superior to the HCQ in reducing water intake and improving saliva flow rate in SS model mice (P<0.05). The HE staining results showed that,compared with the normal group,the number of lymphocyte infiltration foci in SMG tissue in the model group increased,and the pathological score increased (P<0.01). Compared to the SS model group,after the intervention of the ART and HCQ,the number of lymphocytic infiltration foci in the SMG tissue decreased,the area of the lymphocytic infiltration foci was reduced,and the pathology score of the SMG tissues was lowered in the ART group(P<0.01). However,there was no difference in pathological scores between the ART and HCQ groups . The results of IHC,Western blot,and Real-time PCR showed that,compared with the normal group,the expression levels of AQP5 protein and gene in SMG tissue in the model group significantly decreased (P<0.05). Comparing with the SS model group,the ART and HCQ groups could significantly up-regulated the expression levels of AQP5 protein and mRNA in the SMG tissue,and the treatment effect was better than that of HCQ. ConclusionART was able to ameliorate SMG structural damage and salivary secretion function in SS model mice,and its mechanism of action may be related to the up-regulation of AQP5 protein and gene expression levels in SMG cells.
5.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
6.Mechanism of Buyang Huanwutang in Inhibiting Ferroptosis and Enhancing Neurological Function Recovery After Spinal Cord Injury via GPX4-ACSL4 Axis
Luchun XU ; Guozheng JIANG ; Yukun MA ; Jiawei SONG ; Yushan GAO ; Guanlong WANG ; Jiaojiao FAN ; Yongdong YANG ; Xing YU ; Xiangsheng TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):20-30
ObjectiveTo explore the mechanism by which Buyang Huanwutang regulates the glutathione peroxidase 4 (GPX4)-acyl-CoA synthetase long-chain family member 4 (ACSL4) axis to inhibit ferroptosis and promote neurological functional recovery after spinal cord injury (SCI). MethodsNinety rats were randomly divided into five groups: sham operation group, model group, low-dose Buyang Huanwutang group (12.5 g·kg-1), high-dose Buyang Huanwutang group (25 g·kg-1), and Buyang Huanwutang + inhibitor group (25 g·kg-1 + 5 g·kg-1 RSL3). The SCI model was established by using the allen method. Tissue was collected on the 7th and 28th days after operation. Motor function was assessed by using the Basso-Beattie-Bresnahan (BBB) scale. Hematoxylin-eosin (HE), Nissl, and Luxol fast blue (LFB) staining were performed to observe spinal cord histopathology. Transmission electron microscopy was used to examine mitochondrial ultrastructure. Immunofluorescence staining was used to detect the number of NeuN-positive cells and the fluorescence intensity of myelin basic protein (MBP), GPX4, and ACSL4. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) was used to analyze the mRNA expression of GPX4 and ACSL4. Enzyme linked immunosorbent assay (ELISA) was performed to measure the levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). Colorimetric assays were used to determine the iron content in spinal cord tissue. ResultsCompared to the sham operation group, the model group exhibited significantly reduced BBB scores (P<0.01), severe pathological damage in spinal cord tissue, and marked mitochondrial ultrastructural disruption. In addition, the model group showed a decrease in the number of NeuN-positive cells (P<0.01), reduced fluorescence intensity of MBP and GPX4 (P<0.01), lower levels of GSH and SOD (P<0.01), and downregulated mRNA expression of GPX4 (P<0.01). Moreover, compared to the sham operation group, the model group had elevated levels of ROS, MDA, and tissue iron content (P<0.01), along with increased fluorescence intensity and mRNA expression of ACSL4 (P<0.01). Compared with the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group showed significantly improved BBB scores (P<0.05, P<0.01) and exhibited less severe spinal cord tissue damage, reduced edema and inflammatory cell infiltration, increased neuronal survival, and more intact myelin structures. Additionally, mitochondrial ultrastructure was significantly improved in the Buyang Huanwutang group. Compared to the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group significantly increased the number of NeuN-positive cells and the fluorescence intensity of MBP (P<0.05, P<0.01). Furthermore, Buyang Huanwutang significantly increased the fluorescence intensity and mRNA expression of GPX4 (P<0.01) and decreased the fluorescence intensity and mRNA expression of ACSL4 (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. Finally, the Buyang Huanwutang group significantly decreased ROS, MDA, and tissue iron content (P<0.01) and significantly increased GSH and SOD levels (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. ConclusionBuyang Huanwutang inhibits ferroptosis through the GPX4/ACSL4 axis, reduces secondary neuronal and myelin injury and oxidative stress, and ultimately promotes the recovery of neurological function.
7.Effects of polylactic acid-glycolic acid copolymer/lysine-grafted graphene oxide nanoparticle composite scaffolds on osteogenic differentiation of MC3T3 cells
Shuangqi YU ; Fan DING ; Song WAN ; Wei CHEN ; Xuejun ZHANG ; Dong CHEN ; Qiang LI ; Zuoli LIN
Chinese Journal of Tissue Engineering Research 2025;29(4):707-712
BACKGROUND:How to effectively promote bone regeneration and bone reconstruction after bone injury has always been a key issue in clinical bone repair research.The use of biological and degradable materials loaded with bioactive factors to treat bone defects has excellent application prospects in bone repair. OBJECTIVE:To investigate the effect of polylactic acid-glycolic acid copolymer(PLGA)composite scaffold modified by lysine-grafted graphene oxide nanoparticles(LGA-g-GO)on osteogenic differentiation and new bone formation. METHODS:PLGA was dissolved in dichloromethane and PLGA scaffold was prepared by solvent evaporation method.PLGA/GO composite scaffolds were prepared by dispersing graphene oxide uniformly in PLGA solution.LGA-g-GO nanoparticles were prepared by chemical grafting method,and the PLGA/LGA-g-GO composite scaffolds were constructed by blending LGA-g-GO nanoparticles at different mass ratios(1%,2%,and 3%)with PLGA.The micromorphology,hydrophilicity,and protein adsorption capacity of scaffolds of five groups were characterized.MC3T3 cells were inoculated on the surface of scaffolds of five groups to detect cell proliferation and osteogenic differentiation. RESULTS AND CONCLUSION:(1)The surface of PLGA scaffolds was smooth and flat under scanning electron microscope,while the surface of the other four scaffolds was rough.The surface roughness of the composite scaffolds increased with the increase of the addition of LGA-g-GO nanoparticles.The water contact angle of PLGA/LGA-g-GO(3%)composite scaffolds was lower than that of the other four groups(P<0.05).The protein adsorption capacity of PLGA/LGA-g-GO(1%,2%,and 3%)composite scaffolds was stronger than PLGA and PLGA/GO scaffolds(P<0.05).(2)CCK-8 assay showed that PLGA/LGA-g-GO(2%,3%)composite scaffold could promote the proliferation of MC3T3 cells.Alkaline phosphatase staining and alizarin red staining showed that the cell alkaline phosphatase activity in PLGA/LGA-g-GO(2%,3%)group was higher than that in the other three groups(P<0.05).The calcium deposition in the PLGA/GO and PLGA/LGA-g-GO(1%,2%,and 3%)groups was higher than that in the PLGA group(P<0.05).(3)In summary,PLGA/LGA-g-GO composite scaffold can promote the proliferation and osteogenic differentiation of osteoblasts,and is conducive to bone regeneration and bone reconstruction after bone injury.
8.Clinical study on the treatment of chronic atrophic gastritis with spleen and stomach weakness syndrome by Piwei Peiyuan Pill combined with moxibustion
Kairui WU ; Yu YE ; Bei PEI ; Biao SONG ; Yi ZHANG ; Tingting LI ; Qi YANG ; Yun LIU ; Xuejun LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):280-290
Objective:
To determine the clinical efficacy and mechanism of Piwei Peiyuan Pill (PPP) combined with moxibustion for treating patients with chronic atrophic gastritis (CAG) with spleen and stomach weakness syndrome.
Methods:
Ninety-six CAG patients with spleen and stomach weakness syndrome who met the inclusion and exclusion criteria were enrolled at the Department of Spleen and Stomach Diseases of the Second Affiliated Hospital of Anhui University of Chinese Medicine from June 2022 to December 2023. The patients were randomly divided into a control, a Chinese medicine, and a combined group using a random number table method, with 32 cases in each group (two cases per group were excluded). The control group was treated with rabeprazole combined with folic acid tablets (both thrice daily), the Chinese medicine group was treated with PPP (8 g, thrice daily), and the combined group was treated with moxa stick moxibustion (once daily) on the basis of the Chinese medicine group for 12 consecutive weeks. Gastric mucosa atrophy in the three groups was observed before and after treatment. The gastric mucosal pathological score was evaluated. The Patient Reported Outcome (PRO) scale was used to evaluate the patients′ physical and mental health status and quality of life.An enzyme-linked immunosorbent assay was used to detect serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4, IL-10, IL-37, and transforming growth factor (TGF)-β levels in each group. Real-time fluorescence PCR was used to detect the relative expression levels of signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin (mTOR) mRNA in each group. Western blotting was used to detect the relative expression levels of proteins related to the STAT3/mTOR signaling pathway, and the adverse drug reactions and events were recorded and compared.
Results:
There was no statistical difference in age, gender, disease duration, family history of gastrointestinal tumors, alcohol consumption history, and body mass index among the three groups of patients.The total therapeutic efficacy rates of the control, Chinese medicine, and combined groups in treating gastric mucosal atrophy were 66.67% (20/30), 86.67% (26/30), and 90.00% (27/30), respectively (P<0.05). Compared to before treatment, the pathological and PRO scale scores of gastric mucosa in each group decreased after treatment, and TNF-α, IL-1β, IL-37, and TGF-β levels decreased. The relative STAT3 and mTOR mRNA expression levels, as well as the relative STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels decreased (P<0.05), whereas the IL-4 and IL-10 levels increased (P<0.05). After treatment, compared to the control group, the pathological score of gastric mucosa, PRO scale score, TNF-α, IL-1β, IL-37, TGF-β content, relative STAT3 and mTOR mRNA expression levels, and relative STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels in the Chinese medicine and combined groups after treatment were reduced (P<0.05), whereas the IL-4 and IL-10 levels increased (P<0.05). After treatment, compared to the Chinese medicine group, the combined group showed a decrease in relative STAT3, mTOR mRNA expression levels, and STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels (P<0.05).
Conclusion
The combination of PPP and moxibustion may regulate the inflammatory mechanism of the body by inhibiting the abnormal activation of the STAT3/mTOR signaling pathway, upregulating related anti-inflammatory factor levels, downregulating pro-inflammatory factor expression, and increasing related repair factor expression, thereby promoting the recovery of atrophic gastric mucosa, reducing discomfort symptoms, and improving the physical and mental state of CAG patients with spleen and stomach weakness syndrome.
9.Protective effects of exosomes derived from MSCs in radiation-induced lung injury
Lili WANG ; Zien YANG ; Mingyue OUYANG ; Sining XING ; Song ZHAO ; Huiying YU
Chinese Journal of Radiological Health 2025;34(1):13-20
Objective To investigate the role and related mechanisms of exosomes derived from mesenchymal stem cells (MSCs) in radiation-induced lung injury (RILI). Methods Human umbilical cord-derived MSCs were isolated and cultured for the extraction and identification of exosomes. Eighteen male SD rats were randomly divided into Control group, RILI group and RILI + exosomes group (EXO group), with 6 rats in each group. Except for Control group, the other groups received a single X-ray dose of 30 Gy to the right lung. Immediately after irradiation, the EXO group was administered 2 × 109 exosomes/kg via tail vein injection. Control group and RILI group were given the same volume of normal saline. Eight weeks post-irradiation, the rats were sacrificed, lung tissue and peripheral venous blood were collected. HE and Masson staining were employed to observe the pathological and fibrotic changes of lung tissue. The levels of serum inflammatory factors IL-6, IFN-γ, TNF-α, and IL-10 were detected by ELISA. RT-qPCR was used to assess the mRNA levels of IL-1β, IL-6, Cdh1, and Col1a1 in lung tissue. The expression levels of Vimentin and TGF-β1 in lung tissue were measured by immunohistochemical staining. The expression levels of AMPK, p-AMPK, and TGF-β1 in lung tissue were detected by Western blot. Results MSC-derived exosomes were successfully extracted and identified. Compared with RILI group, EXO group showed significantly reduced pathological changes of lung inflammation and collagen deposition. The levels of serum inflammatory factors IL-6, INF-γ, and TNF-α were significantly decreased (P < 0.05), and the level of anti-inflammatory factor IL-10 was significantly increased (P < 0.05). The mRNA levels of IL-1β, IL-6, and Col1a1 in lung tissue were significantly decreased (P < 0.05 or P < 0.01), and the mRNA level of Cdh1 was significantly increased (P < 0.05 or P < 0.01). The levels of Vimentin and TGF-β1 in lung tissue were significantly reduced, while p-AMPK level was significantly up-regulated (P < 0.05). Conclusion Exosomes derived from MSCs may alleviate RILI by inhibiting inflammatory responses and regulating epithelial-mesenchymal transition mediated by AMPK/TGF-β1 signaling pathway.
10.Application of reimplantation technique in treating Marfan syndrome and giant aortic root aneurysm during mid-pregnancy: A case report
NIU ; Hong QIAN ; Haibo SONG ; Lei DU ; Hai YU ; Eryong ZHANG ; Zhenghua XIAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):416-420
Pregnancy complicated by aortic root aneurysm in patients with Marfan syndrome is one of the main causes of termination of pregnancy or even death in pregnant women. A very small number of pregnant women require cardiac surgery to preserve pregnancy under extracorporeal circulation, and all surgeries use aortic root replacement. We reported a 30-year-old patient with severe aortic regurgitation combined with giant aortic root aneurysm and Marfan syndrome in mid-pregnancy. Valve-sparing root replacement using reimplantation technology was performed via a multidisciplinary cooperation model. This not only achieved the patient’s desire to continue pregnancy but also avoided the anticoagulation and bleeding complications brought by mechanical valve replacement, reduced pregnancy risks and improved long-term quality of life. Postoperative echocardiography showed a small amount of aortic valve regurgitation, aortic valve coaptation height of 0.6 cm, effective height of 1.1 cm, maximum aortic flow velocity of 1.4 m/s, mean transvalvular pressure gradient of 4.4 mm Hg, and satisfactory clinical results.


Result Analysis
Print
Save
E-mail