1.Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases
Yonsei Medical Journal 2025;66(3):131-140
Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%–60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.
2.Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases
Yonsei Medical Journal 2025;66(3):131-140
Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%–60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.
3.Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases
Yonsei Medical Journal 2025;66(3):131-140
Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%–60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.
4.Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases
Yonsei Medical Journal 2025;66(3):131-140
Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%–60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.
5.Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases
Yonsei Medical Journal 2025;66(3):131-140
Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%–60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.
8.Association between Neuroimaging Scores and Clinical Status in Pediatric Patients Diagnosed with Metachromatic Leukodystrophy
Sunho LEE ; Ji Hoon NA ; Young-Mock LEE
Annals of Child Neurology 2024;32(4):219-225
Purpose:
Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by arylsulfatase A deficiency, which leads to progressive demyelination in both the central and peripheral nervous systems, resulting in significant gross motor deterioration. This study aimed to analyze data concerning neuroimaging and clinical phenotypes of MLD patients, categorized by disease subtype.
Methods:
Patients diagnosed with MLD based on arylsulfatase A enzymatic activity, demyelination observed in brain magnetic resonance images, and/or pathogenic mutations were included in this study. The medical charts of 10 patients with confirmed MLD were retrospectively reviewed. We used a simplified magnetic resonance imaging (MRI) scoring system and clinical status, including survival. We analyzed the correlations between the scores of specific neuroimaging lesions and clinical status in two groups, categorized as late-infantile and juvenile types based on the age at symptom onset.
Results:
We detected a positive relationship between clinical function deterioration and MRI score (rho=0.59, P=0.002) in patients with MLD. This correlation was stronger in the late-infantile type (rho=0.700, P=0.003) than in the juvenile type (rho=0.513, P=0.029). A strong relationship was also noted in patients with high signal intensities in the pons and basal ganglia, and cerebellar atrophy, but not in those with lesions in the midbrain. MLD with a high MRI score was associated with poor clinical function.
Conclusion
The identified correlations between modified MRI scores and clinical function scales may help predict the prognosis of patients with MLD, thereby aiding in the identification of treatment options and enhancing the quality of life for these patients.
9.Nusinersen for Spinal Muscular Atrophy Type I with Chronic Respiratory Failure: A Retrospective Study in South Korea
Hui Jin SHIN ; Ji-Hoon NA ; Hyunjoo LEE ; Young-Mock LEE
Yonsei Medical Journal 2023;64(12):705-711
Purpose:
To analyze the efficacy and safety of nusinersen in patients with spinal muscular atrophy (SMA) type I with chronic respiratory failure.
Materials and Methods:
We retrospectively reviewed seven patients diagnosed with SMA type I and chronic respiratory failure who were on permanent ventilation and treated with nusinersen at Gangnam Severance Hospital between January 2018 and July 2023. Patient demographics and clinical characteristics were recorded, and treatment progress was evaluated according to Hammersmith Infant Neurological Examination (HINE-2) and Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) scores.
Results:
Patients initially developed hypotonia at a mean age of 3.7 months. Mean age at start of nusinersen was 7.3 years; the mean duration of follow-up after starting nusinersen was 46.2 months. At 6-, 18-, 38-, 58-, and 74-month follow-up, the mean changes in CHOP-INTEND scores were 1.0, 2.9, 1.8, 1.5, and 1.5, respectively, and the proportions of patients who showed disease amelioration were 28.6%, 71.4%, 75.0%, 100%, and 100%, respectively.
Conclusion
Nusinersen is safe and effective in patients with SMA type I, even those with chronic respiratory failure and those on permanent ventilation. No significant adverse effects of nusinersen were observed.

Result Analysis
Print
Save
E-mail