1.Quality Evaluation of Naomaili Granules Based on Multi-component Content Determination and Fingerprint and Screening of Its Anti-neuroinflammatory Substance Basis
Ya WANG ; Yanan KANG ; Bo LIU ; Zimo WANG ; Xuan ZHANG ; Wei LAN ; Wen ZHANG ; Lu YANG ; Yi SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):170-178
ObjectiveTo establish an ultra-performance liquid fingerprint and multi-components determination method for Naomaili granules. To evaluate the quality of different batches by chemometrics, and the anti-neuroinflammatory effects of water extract and main components of Naomaili granules were tested in vitro. MethodsThe similarity and common peaks of 27 batches of Naomaili granules were evaluated by using Ultra performance liquid chromatography (UPLC) fingerprint detection. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the content of the index components in Naomaili granules and to evaluate the quality of different batches of Naomaili granules by chemometrics. LPS-induced BV-2 cell inflammation model was used to investigate the anti-neuroinflammatory effects of the water extract and main components of Naomaili granules. ResultsThe similarity of fingerprints of 27 batches of samples was > 0.90. A total of 32 common peaks were calibrated, and 23 of them were identified and assigned. In 27 batches of Naomaili granules, the mass fractions of 14 components that were stachydrine hydrochloride, leonurine hydrochloride, calycosin-7-O-glucoside, calycosin,tanshinoneⅠ, cryptotanshinone, tanshinoneⅡA, ginsenoside Rb1, notoginsenoside R1, ginsenoside Rg1, paeoniflorin, albiflorin, lactiflorin, and salvianolic acid B were found to be 2.902-3.498, 0.233-0.343, 0.111-0.301, 0.07-0.152, 0.136-0.228, 0.195-0.390, 0.324-0.482, 1.056-1.435, 0.271-0.397, 1.318-1.649, 3.038-4.059, 2.263-3.455, 0.152-0.232, 2.931-3.991 mg∙g-1, respectively. Multivariate statistical analysis showed that paeoniflorin, ginsenoside Rg1, ginsenoside Rb1 and staphylline hydrochloride were quality difference markers to control the stability of the preparation. The results of bioactive experiment showed that the water extract of Naomaili granules and the eight main components with high content in the prescription had a dose-dependent inhibitory effect on the release of NO in the cell supernatant. Among them, salvianolic acid B and ginsenoside Rb1 had strong anti-inflammatory activity, with IC50 values of (36.11±0.15) mg∙L-1 and (27.24±0.54) mg∙L-1, respectively. ConclusionThe quality evaluation method of Naomaili granules established in this study was accurate and reproducible. Four quality difference markers were screened out, and eight key pharmacodynamic substances of Naomaili granules against neuroinflammation were screened out by in vitro cell experiments.
2.Effect of Ningying Formula (宁瘿方) Combined with Low-Dose Antithyroid Drugs on Reducing Relapse Risk for Patients with Graves' Hyperthyroidism in Remission Stage:A Retrospective Cohort Study
Yuqin HUANG ; Mingshuai ZHANG ; Shijian LIU ; Feng TAO ; Yi CHEN
Journal of Traditional Chinese Medicine 2026;67(1):45-52
ObjectiveTo evaluate the effect of Ningying Formula (宁瘿方) combined with low-dose antithyroid drugs (ATDs) on the relapse risk for patients with Graves' hyperthyroidism (GH) during the remission phase, and to analyze the related factors between GH relapse and thyrotropin receptor antibody (TRAb) negativity, so as to provide evidence for the standardized management of GH in remission stage. MethodsA single-center retrospective cohort study was conducted, including 269 GH patients in the remission stage. After propensity score matching (PSM), 102 matched pairs (204 patients) were established. The control group received low-dose ATDs as maintenance therapy, while the exposure group received the core Ningying Formula in addition to low-dose ATDs. The primary outcome was the GH recurrence rate; the secondary outcome was the thyrotropin receptor antibody (TRAb) negativity rate (TRAb<1.75 IU/L). Safety outcomes included treatment-related adverse events. Differences between groups were assessed using Cox regression models and Kaplan-Meier curves, with sensitivity analysis performed using inverse probability of treatment weighting (IPTW). ResultsThe median follow-up in the matched cohort was 28.07 months. Regarding the GH recurrence outcome, the recurrence rate in the exposure group (18/102, 17.6%) was significantly lower than that in the control group (31/102, 30.4%; χ²=4.539, P=0.033); regarding the TRAb negativity outcome, the TRAb negativity rate in the exposure group (50/102, 49.0%) was significantly higher than that in the control group (23/102, 22.5%; χ²=15.551, P<0.001). Multivariate Cox regression analysis for recurrence showed that Ningying Formula treatment reduced the risk of recurrence [HR=0.324, 95%CI(0.170, 0.617), P<0.001]. Male [HR=2.209, 95%CI(1.079, 4.520), P=0.030], higher initial TRAb level [per 1 IU/L increase: HR=1.033, 95%CI(1.003, 1.064), P=0.032], and larger thyroid volume [per 1 ml increase: HR=1.045, 95%CI(1.003, 1.088), P=0.035] were identified as independent risk factors for recurrence; multivariate Cox regression analysis for TRAb negativity indicated that Ningying Formula treatment promoted TRAb negativity [HR=1.826, 95%CI(1.091, 3.056), P=0.022], while a higher initial TRAb level was associated with a lower probability of negativity [HR=0.974, 95%CI(0.950, 0.998), P=0.032]. Survival analysis showed significant differences in relapse rate between groups (Log-Rank P=0.003) and in TRAb outcomes (Log-Rank P=0.034). The incidence of treatment-related adverse events was similar between groups (P=0.757). The IPTW sensitivity analysis was consistent with the primary analysis, indicating robust results. ConclusionThe Ningying Formula combined with low-dose ATDs can significantly reduce the risk of recurrence and can improve the TRAb negativity rate in GH patients during the remission stage, without increasing common adverse events, making it an optional strategy for reducing relapse risk during remission. Male gender, higher baseline TRAb level, and larger thyroid volume indicate a higher risk of recurrence, warranting focused follow-up and stratified management.
3.Study on the current status of emergency management for severe mental disorders in Shanghai
Xiaolei GE ; Yi ZHU ; Chunmei CHEN ; Youwei ZHU ; Yanli LIU ; Jun CAI ; Weibo ZHANG ; Fei XIE
Shanghai Journal of Preventive Medicine 2025;37(3):276-281
ObjectiveTo investigate the current status of emergency management for severe mental disorders in Shanghai, and to provide countermeasures and suggestions for the establishment of a sound emergency management system for severe mental disorders and the enhancement of emergency management capability. MethodsA questionnaire survey and qualitative interviews were used to conduct an investigation into the emergency management in 17 district-level mental illness prevention and control institutions in Shanghai, which includes the basic situation of emergency management for severe mental disorders, the construction of emergency response teams and personnel, emergency preparedness drills and training, emergency management plans and rules and regulations, and problems encountered in emergency management. ResultsIn terms of emergency management mechanism and basic situation, resources such as personnel allocation, security funds and green channel were well equipped in each district-level mental illness prevention and control institution in Shanghai. However, the equipment of some hardware facilities was still insufficient to some extent. Therefore, further improvement on the emergency management mechanism for severe mental disorders was needed. With regard to the construction of emergency team and personnel allocation, the majority were those aged between 35‒<45 years old, with a bachelor’s degree, and more than 10 years of working experience. For example, 90.27% staff in district-level mental illness prevention and control institution had a bachelor’s degree or above, which was higher than that among the staff in community-level (73.60%); staff majored in clinical medicine in district-level institution accounted for the proportion at 52.71%, higher than that among the staff in community-level (28.86%); 57.24% staff in district-level institution had an intermediate professional title, higher than that among the staff in community-level (42.28%); and 69.90% staff in district-level institution had more than 10 years of working experience, higher than that among the staff in community-level (43.62%). In the aspect of emergency drills and training, all district-level mental illness prevention and control institutions in Shanghai had a high demand for emergency training, and the weak aspects mainly focused on lack of emergency service protocols, skills of addressing technical challenges, and construction of effectiveness evaluation system. Moreover, the teaching methods were primarily centered on case analysis, simulation drills, interactive discussions, and so forth. Concerning emergency management plans and rules and regulations, all districts in Shanghai had relatively established well-developed systems for emergency response plans, emergency response leadership groups, and emergency response operational task forces for severe mental disorders. About half of the institutions had established other rules and regulations related to emergency management of severe mental disorders in addition to emergency plans. ConclusionShanghai has initially established an emergency management system for severe mental disorders, but it is still fragile in specialized training for emergency management of severe mental disorders, construction of emergency management mechanisms, and the building-up of grassroots emergency teams. Further priorities should include strengthening emergency management training, enhancing the construction of emergency management personnel teams, and gradually establishing a more comprehensive and integrated emergency management mechanism for severe mental disorders.
4.Construction of an evaluation index system for community visual health services in Shanghai
Chengyuan ZHANG ; Yuting WU ; Yajun PENG ; Tao YU ; Yi XU ; Senlin LIN ; Haidong ZOU ; Lina LU
Shanghai Journal of Preventive Medicine 2025;37(3):282-287
ObjectiveTo improve the quality and service performance of community visual health services in Shanghai, and to establish a set of reasonable and effective evaluation index system for community visual health services. MethodsCentered on the national and Shanghai-based visual health policies and based on the current status and development trends of community visual health service program in Shanghai, the candidate indicators were formed through literature review and expert interviews, firstly. The framework of an evaluation index system was formulated through qualitative research successively, which was further revised and perfected using the Delphi method. Coefficient weights were calculated using the analytic hierarchy process (AHP), culminating in the establishment of the community visual health evaluation index system, lastly. ResultsA total of 22 visual health experts from district-level center for disease control, hospital ophthalmology and leaders in charging of visual health service in community health centers participated in the Delphi questionnaire survey, with a questionnaire recovery rate of 100% and an expert authority coefficient of 0.86, indicating high credibility. After a round of correspondence to experts’ importance ratings and discussions, a comprehensive evaluation index system comprising 3 primary indicators, 12 secondary indicators, and 47 tertiary indicators, along with 5 additional indicators, was finalized. ConclusionAn index system tailored to effective evaluation for community visual health initiatives was drawn up in this study, which can promote the capacity building in community eye health services, facilitating the high-quality development of visual health courses, and enhancing residents’ eye health.
5.Lactate Transferase Function of Alanyl-transfer t-RNA Synthetase and Its Relationship With Exercise
Ying-Ying SUN ; Zheng XING ; Feng-Yi LI ; Jing ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1337-1348
Lactylation (Kla), a protein post-translational modification characterized by the covalent conjugation of lactyl groups to lysine residues in proteins, is widely present in living organisms. Since its discovery in 2019, it has attracted much attention for its role in regulating major pathological processes such as tumorigenesis, neurodegenerative diseases, and cardiovascular diseases. By mediating core biological processes such as signal transduction, epigenetic regulation, and metabolic homeostasis, lactylation contributes to disease progression. However, the lactylation donor lactyl-CoA has a low intracellular concentration, and the specific enzyme catalyzing lactylation is not yet clear, which has become an urgent issue in lactate research. A groundbreaking study in 2024 found that alanyl-transfer t-RNA synthetase 1/2 (AARS1/2), members of the aminoacyl-tRNA synthetase (aaRS) family, can act as protein lysine lactate transferases, modifying histones and metabolic enzymes directly with lactate as a substrate, without relying on the classical substrate lactyl-CoA, promoting a new stage in lactate research. Although exercise significantly increases lactate levels in the body and can induce changes in lactylation in multiple tissues and cells, the regulation of lactylation by exercise is not entirely consistent with lactate levels. Research has found that high-intensity exercise can induce upregulation of lactate at 37 lysine sites in 25 proteins of adipose tissue, while leading to downregulation of lactate at 27 lysine sites in 22 proteins. The level of lactate is not the only factor regulating lactylation through exercise. We speculate that the lactate transferase AARS1/2 play an important role in the process of lactylation regulated by exercise, and AARS1/2 should also be regulated by exercise. This review introduces the molecular biology characteristics, subcellular localization, and multifaceted biological functions of AARS, including its canonical roles in alanylation and editing, as well as its newly identified lactate transferase activity. We detail the discovery of AARS1/2 as lactylation catalysts and the specific process of them as lactate transferases catalyzing protein lactylation. Furthermore, we discuss the pathophysiological significance of AARS in tumorigenesis, immune dysregulation, and neuropathy, with a focus on exploring the expression regulation and possible mechanisms of AARS through exercise. The expression of AARS in skeletal muscle regulated by exercise is related to exercise time and muscle fiber type; the skeletal muscle AARS2 upregulated by long-term and high-intensity exercise catalyzes the lactylation of key metabolic enzymes such as pyruvate dehydrogenase E1 alpha subunit (PDHA1) and carnitine palmitoyltransferase 2 (CPT2), reducing exercise capacity and providing exercise protection; physiological hypoxia caused by exercise significantly reduces the ubiquitination degradation of AARS2 by inhibiting its hydroxylation, thereby maintaining high levels of AARS2 protein and exerting lactate transferase function; exercise induced lactate production can promote the translocation of AARS1 cytoplasm to the nucleus, exert lactate transferase function upon nuclear entry, regulate histone lactylation, and participate in gene expression regulation; exercise induced lactate production promotes direct interactions between AARS and star molecules such as p53 and cGAS, and is widely involved in the occurrence and development of tumors and immune diseases. Elucidating the regulatory mechanism of exercise on AARS can provide new ideas for improving metabolic diseases and promote health through exercise.
6.Exercise-induced Mitohormesis in Counteracting Age-related Sarcopenia
Zi-Yi ZHANG ; Mei MA ; Hai BO ; Tao LIU ; Yong ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1349-1361
Sarcopenia, an age-related degenerative skeletal muscle disorder characterized by progressive loss of muscle mass, diminished strength, and impaired physical function, poses substantial challenges to global healthy aging initiatives. The pathogenesis of this condition is fundamentally rooted in mitochondrial dysfunction, manifested through defective energy metabolism, disrupted redox equilibrium, imbalanced dynamics, and compromised organelle quality control. This comprehensive review elucidates the central role of exercise-induced mitochondrial hormesis as a critical adaptive mechanism counteracting sarcopenia. Mitohormesis represents an evolutionarily conserved stress response wherein sublethal mitochondrial perturbations, particularly transient low-dose reactive oxygen species (ROS) generated during muscle contraction, activate cytoprotective signaling cascades rather than inflicting macromolecular damage. The mechanistic foundation of this process involves ROS functioning as essential signaling molecules that activate the Keap1 nuclear factor erythroid 2 related factor 2 (Nrf2) antioxidant response element pathway. This activation drives transcriptional upregulation of phase II detoxifying enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GPx), thereby enhancing cellular redox buffering capacity. Crucially, Nrf2 engages in bidirectional molecular crosstalk with peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α), the principal regulator orchestrating mitochondrial biogenesis through coordinated induction of nuclear respiratory factors 1 and 2 (NRF1/2) along with mitochondrial transcription factor A (Tfam), collectively facilitating mitochondrial DNA replication and respiratory complex assembly. Concurrently, exercise-induced alterations in cellular energy status, specifically diminished ATP to AMP ratios, potently activate AMP activated protein kinase (AMPK). This energy-sensing kinase phosphorylates PGC-1α while concomitantly stimulating NAD dependent deacetylase sirtuin 1 (SIRT1) activity, which further potentiates PGC-1α function through post-translational deacetylation. The integrated AMPK/PGC-1α/SIRT1 axis coordinates mitochondrial biogenesis, optimizes network architecture through regulation of fusion proteins mitofusin 1 (Mfn1), mitofusin 2 (Mfn2) and optic atrophy protein 1 (OPA1), and enhances clearance of damaged organelles via selective activation of mitophagy receptors BCL2 interacting protein 3 (Bnip1) and FUN14 domain containing 1 (FNDC1). Exercise further stimulates the mitochondrial unfolded protein response (UPRmt), increasing molecular chaperones such as heat shock protein 60 (HSP60) and HSP10 to preserve proteostasis. Within the mitochondrial matrix, SIRT3 fine-tunes metabolic flux through deacetylation of electron transport chain components, improving phosphorylation efficiency while attenuating pathological ROS emission. Distinct exercise modalities differentially engage these pathways. Aerobic endurance training primarily activates AMPK/PGC-1α signaling and UPRmt to expand mitochondrial volume and oxidative capacity. Resistance training exploits mechanical tension to acutely stimulate mechanistic target of rapamycin complex 1 (mTORC1) mediated protein synthesis while modulating dynamin related protein 1 (Drp1) phosphorylation dynamics to support mitochondrial network reorganization. High intensity interval training generates potent metabolic oscillations that rapidly amplify AMPK/PGC-1α and Nrf2 activation, demonstrating particular efficacy in insulin-resistant phenotypes. Strategically designed concurrent training regimens synergistically integrate these adaptations. Mitochondrial-nuclear communication through tricarboxylic acid cycle metabolites and mitochondrially derived peptides such as mitochondrial open reading frame of 12s rRNA-c (MOTS-c) coordinates systemic metabolic reprogramming, with exercise-responsive myokines including fibroblast growth factor 21 (FGF-21) mediating inter-tissue signaling to reduce inflammation and enhance insulin sensitivity. This integrated framework provides the scientific foundation for precision exercise interventions targeting mitochondrial pathophysiology in sarcopenia, incorporating biomarker monitoring and exploring pharmacological potentiators including nicotinamide riboside and MOTS-c mimetics. Future investigations should delineate temporal dynamics of mitohormesis signaling and epigenetic regulation to optimize therapeutic approaches for age-related muscle decline.
7.Exercise Modulates Protein Acylation to Improve Cardiovascular Diseases
Feng-Yi LI ; Wen-Hua HUANG ; Jing ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1453-1467
The pathogenesis of cardiovascular diseases (CVD) is complex, and dynamic imbalances in protein acylation modification are significantly associated with the development of CVD. In recent years, most studies on exercise-regulated protein acylation modifications to improve cardiovascular function have focused on acetylation and lactylation. Protein acylation modifications are usually affected by exercise intensity. High-intensity exercise directly affects oxidative stress and cellular energy supply, such as changes in ATP and NAD+ levels; moderate-intensity exercise is often accompanied by improvements in aerobic metabolism, such as fatty acid β-oxidation and TCA cycle, which modulate mitochondrial biogenesis. The above processes may affect the acylation status of relevant regulatory enzymes and functional proteins, thereby altering their function and activity and triggering signaling cascades to adapt to exercise’s metabolic demands and stresses. Exercise regulates the levels of acylation modifications of H3K9, H3K14, H3K18, and H3K23, which are involved in regulating the transcriptional expression of genes involved in oxidative stress, glycolysis, inflammation, and hypertrophic response by altering chromatin structure and function. Exercise can regulate the acylation modification of non-histone-specific sites in the cardiovascular system involved in mitochondrial function, glycolipid metabolism, fibrosis, protein synthesis, and other biological processes, and participates in the regulation of protein activity and function by altering the stability, localization, and interaction of proteins, and ultimately works together to achieve the improvement of cardiovascular phenotypes and biological functions. Exercise affects acyl donor concentration, acyltransferase, and deacetylase expression and activity by influencing acyl donor concentration, acyltransferase, and deacetylase. Exercise regulates the abundance of acyl donors such as acetyl coenzyme A, propionyl coenzyme A, butyryl coenzyme A, succinyl coenzyme A, and lactoyl coenzyme A by promoting glucose and lipid metabolism and improving intestinal bacterial flora, which in turn affects protein acylation modification, accelerates oxidative decarboxylation of pyruvic acid in the body, and activates the energy-sensing molecule, adenosine monophosphate-activated protein kinase (AMPK), to improve cardiovascular function. Exercise may affect protein acylation modifications in the cardiovascular system by regulating the activity and expression of adenoviral E1A binding protein of 300 kDa (p300)/cyclic adenosine monophosphate response element-binding protein (CBP), general control nonderepressible 5-related N-acetyltransferases (GNAT), and alanyl-transfer t-RNA synthetase (AARS), which in turn improves cardiovascular function. The relationship between exercise and cardiovascular deacetylases has attracted much attention, with SIRT1 and SIRT3 of the silence information regulator (SIRT) family of proteins being the most studied. Exercise may exert transient or long-term stable cardiovascular protective benefits by promoting the enzymatic activity and expression of SIRT1, SIRT3, and HDAC2, inhibiting the enzymatic activity and expression of HDAC4, and mediating the deacylation of metabolic regulation-related enzymes, cytokines, and molecules of signaling pathways. This review introduces the role of protein acylation modification on CVD and the effect of exercise-mediated protein acylation modification on CVD. Based on the existing studies, it analyzes the possible mechanisms of exercise-regulated protein acylation modification to improve CVD from the perspectives of acylation modification donors, acyltransferases, and deacetylases. Deciphering the regulation of cardiovascular protein acylation and modification by exercise and exploring the essential clues to improve cardiovascular disease can enrich the theoretical basis for exercise to promote cardiovascular health. However, it is also significant for developing new cardiovascular disease prevention and treatment targets.
8.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes.
9.Exhaled Volatile Organic Compounds Analysis in Patients with Pulmonary Complications after Abdominal Surgery
Bin WANG ; Xiaoli ZHANG ; Xiaochun YANG ; Jingyu WANG ; Youzhong AN ; Yi FENG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):528-534
ObjectiveTo identify the characteristic exhaled volatile organic compounds (VOCs) associated with postoperative pulmonary complications (PPCs) in patients after abdominal surgery. MethodsThis study prospectively enrolled 76 patients with tracheal intubation who were transferred to intensive care unit (ICU) after abdominal surgery at Peking University People's Hospital between December 10, 2022 and June 30, 2023. The patients' basic information was collected during their perioperative period, and their exhaled VOCs were collected within 24 hours after their admission to the ICU, and then analyzed by gas chromatography and mass spectrometry (GC-MS). According to whether PPCs occurred 24 hours after surgery, the patients were divided into PPCs group (n=44) and non-PPCs group (n=32), and the differences of VOCs were compared between the two groups. Lasso regression analysis was used to screen the valuable variables of VOCs, and Logistics regression analysis to determine the characteristic VOCs associated with the occurrence of PPCs. ResultsAmong the 76 patients, 44 had PPCs and 32 had no PPCs. Lasso regression analysis screened 4 PPCs-related compounds from exhaled VOCs of two groups for further analysis and Logistics regression analysis showed that the increase of 1-Hexadecanol content in exhaled breath was significantly correlated with the occurrence of PPCs (OR: 1.000, P=0.002). ConclusionThis study indicated that the increased content of 1-Hexadecanol in patients' exhaled breath after abdominal surgery may be associated with the occurrence of PPCs.
10.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors

Result Analysis
Print
Save
E-mail