1.Quality Evaluation of Naomaili Granules Based on Multi-component Content Determination and Fingerprint and Screening of Its Anti-neuroinflammatory Substance Basis
Ya WANG ; Yanan KANG ; Bo LIU ; Zimo WANG ; Xuan ZHANG ; Wei LAN ; Wen ZHANG ; Lu YANG ; Yi SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):170-178
ObjectiveTo establish an ultra-performance liquid fingerprint and multi-components determination method for Naomaili granules. To evaluate the quality of different batches by chemometrics, and the anti-neuroinflammatory effects of water extract and main components of Naomaili granules were tested in vitro. MethodsThe similarity and common peaks of 27 batches of Naomaili granules were evaluated by using Ultra performance liquid chromatography (UPLC) fingerprint detection. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the content of the index components in Naomaili granules and to evaluate the quality of different batches of Naomaili granules by chemometrics. LPS-induced BV-2 cell inflammation model was used to investigate the anti-neuroinflammatory effects of the water extract and main components of Naomaili granules. ResultsThe similarity of fingerprints of 27 batches of samples was > 0.90. A total of 32 common peaks were calibrated, and 23 of them were identified and assigned. In 27 batches of Naomaili granules, the mass fractions of 14 components that were stachydrine hydrochloride, leonurine hydrochloride, calycosin-7-O-glucoside, calycosin,tanshinoneⅠ, cryptotanshinone, tanshinoneⅡA, ginsenoside Rb1, notoginsenoside R1, ginsenoside Rg1, paeoniflorin, albiflorin, lactiflorin, and salvianolic acid B were found to be 2.902-3.498, 0.233-0.343, 0.111-0.301, 0.07-0.152, 0.136-0.228, 0.195-0.390, 0.324-0.482, 1.056-1.435, 0.271-0.397, 1.318-1.649, 3.038-4.059, 2.263-3.455, 0.152-0.232, 2.931-3.991 mg∙g-1, respectively. Multivariate statistical analysis showed that paeoniflorin, ginsenoside Rg1, ginsenoside Rb1 and staphylline hydrochloride were quality difference markers to control the stability of the preparation. The results of bioactive experiment showed that the water extract of Naomaili granules and the eight main components with high content in the prescription had a dose-dependent inhibitory effect on the release of NO in the cell supernatant. Among them, salvianolic acid B and ginsenoside Rb1 had strong anti-inflammatory activity, with IC50 values of (36.11±0.15) mg∙L-1 and (27.24±0.54) mg∙L-1, respectively. ConclusionThe quality evaluation method of Naomaili granules established in this study was accurate and reproducible. Four quality difference markers were screened out, and eight key pharmacodynamic substances of Naomaili granules against neuroinflammation were screened out by in vitro cell experiments.
2.Expression and clinical significance of TLR4 and NF-κB in conjunctival epithelial cells and tears of patients with dry eye
Guoying LIU ; Jiangping HOU ; Huan WU ; Yi JIANG
International Eye Science 2025;25(6):975-979
AIM: To investigate the expression and clinical diagnostic value of toll-like receptor 4(TLR4)and nuclear factor-κB(NF-κB)in conjunctival epithelial cells and tears of patients with dry eye.METHODS: From January 2023 to June 2024, 104 dry eye patients(104 eyes, disease group)who visited our hospital and 100 healthy individuals(100 eyes, control group)who underwent physical examination were selected. The changes of TLR4 and NF-κB in conjunctival epithelial cells and tears were analyzed. Pearson analysis was applied to analyze the correlation between TLR4 and NF-κB expression in conjunctival epithelial cells and tears. Logistic analysis was applied to analyze the factors that affected dry eye. ROC was applied to analyze the diagnostic value of TLR4 and NF-κB expression in conjunctival epithelial cells and tears for dry eye.RESULTS: The differences in the use of eye drops, tear film break-up time(BUT), Schirmer's test(SⅠt), tear film thickness(TFT), and corneal fluorescein staining(CFS)scores between the disease group and the control group were statistically significant(all P<0.01). The expression levels of TLR4 and NF-κB in conjunctival epithelial cells and tears in the disease group were significantly higher than those in the control group(all P<0.01). There was a positive correlation between TLR4 and NF-κB in conjunctival epithelial cells and tears(r=0.392, 0.348, all P<0.05). Frequent use of eye drops, CFS score, TLR4, and NF-κB were risk factors for dry eye(OR=2.153, 3.183, 1.578, 2.452, all P<0.05), while BUT, SⅠt, and TFT were protective factors for dry eye(OR=0.654, 0.755, 0.276, all P<0.05). The sensitivity, specificity, and AUC of TLR4 combined with NF-κB in conjunctival epithelial cells in the diagnosis of dry eye were 86.54%, 81.00%, and 0.889, respectively. The combination of TLR4 and NF-κB had higher diagnostic value for dry eye than uncombined diagnosis(Zcombination-TLR4=3.506, P=0.001; Zcombination-NF-κB=3.165, P=0.002). The sensitivity, specificity, and AUC of TLR4 combined with NF-κB in tears for diagnosing dry eye were 82.69%, 70.00%, and 0.818, respectively. The combination of TLR4 and NF-κB in tears had higher diagnostic value for dry eye than uncombined diagnosis(Zcombination-TLR4=3.117, P=0.002; Zcombination-NF-κB=2.363, P=0.018).CONCLUSION: The expression levels of TLR4 and NF-κB in conjunctival epithelial cells and tears of patients with dry eye are elevated. TLR4 and NF-κB are related to the development of dry eye, and that elevated levels of both are associated with an increased risk of dry eye disease. The combination of TLR4 and NF-κB has a certain diagnostic significance for dry eye.
3.The Mechanism of Blue Light in Inactivating Microorganisms and Its Applications in The Food and Medical Fields
Ruo-Hong BI ; Rong-Qian WU ; Yi LÜ ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2025;52(5):1219-1228
Blue light inactivation technology, particularly at the 405 nm wavelength, has demonstrated distinct and multifaceted mechanisms of action against both Gram-positive and Gram-negative bacteria, offering a promising alternative to conventional antibiotic therapies. For Gram-positive pathogens such as Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus (MRSA), the bactericidal effects are primarily mediated by endogenous porphyrins (e.g., protoporphyrin III, coproporphyrin III, and uroporphyrin III), which exhibit strong absorption peaks between 400-430 nm. Upon irradiation, these porphyrins are photoexcited to generate cytotoxic reactive oxygen species (ROS), including singlet oxygen, hydroxyl radicals, and superoxide anions, which collectively induce oxidative damage to cellular components. Early studies by Endarko et al. revealed that (405±5) nm blue light at 185 J/cm² effectively inactivated L. monocytogenes without exogenous photosensitizers, supporting the hypothesis of intrinsic photosensitizer involvement. Subsequent work by Masson-Meyers et al. demonstrated that 405 nm light at 121 J/cm² suppressed MRSA growth by activating endogenous porphyrins, leading to ROS accumulation. Kim et al. further elucidated that ROS generated under 405 nm irradiation directly interact with unsaturated fatty acids in bacterial membranes, initiating lipid peroxidation. This process disrupts membrane fluidity, compromises structural integrity, and impairs membrane-bound proteins, ultimately causing cell death. In contrast, Gram-negative bacteria such as Salmonella, Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa, and Acinetobacter baumannii exhibit more complex inactivation pathways. While endogenous porphyrins remain central to ROS generation, studies reveal additional photodynamic contributors, including flavins (e.g., riboflavin) and bacterial pigments. For instance, H. pylori naturally accumulates protoporphyrin and coproporphyrin mixtures, enabling efficient 405 nm light-mediated inactivation without antibiotic resistance concerns. Kim et al. demonstrated that 405 nm light at 288 J/cm² inactivates Salmonella by inducing genomic DNA oxidation (e.g., 8-hydroxy-deoxyguanosine formation) and disrupting membrane functions, particularly efflux pumps and glucose uptake systems. Huang et al. highlighted the enhanced efficacy of pulsed 405 nm light over continuous irradiation for E. coli, attributing this to increased membrane damage and optimized ROS generation through frequency-dependent photodynamic effects. Environmental factors such as temperature, pH, and osmotic stress further modulate susceptibility, sublethal stress conditions (e.g., high salinity or acidic environments) weaken bacterial membranes, rendering cells more vulnerable to subsequent ROS-mediated damage. The 405 nm blue light inactivates drug-resistant Pseudomonas aeruginosa through endogenous porphyrins, pyocyanin, and pyoverdine, with the inactivation efficacy influenced by bacterial growth phase and culture medium composition. Intriguingly, repeated 405 nm exposure (20 cycles) failed to induce resistance in A. baumannii, with transient tolerance linked to transient overexpression of antioxidant enzymes (e.g., superoxide dismutase) or stress-response genes (e.g., oxyR). For Gram-positive bacteria, porphyrin abundance dictates sensitivity, whereas in Gram-negative species, membrane architecture and accessory pigments modulate outcomes. Critically, ROS-mediated damage is nonspecific, targeting DNA, proteins, and lipids simultaneously, thereby minimizing resistance evolution. The 405 nm blue light technology, as a non-chemical sterilization method, shows promise in medical and food industries. It enhances infection control through photodynamic therapy and disinfection, synergizing with red light for anti-inflammatory treatments (e.g., acne). In food processing, it effectively inactivates pathogens (e.g., E. coli, S. aureus) without altering food quality. Despite efficacy against multidrug-resistant A. baumannii, challenges include device standardization, limited penetration in complex materials, and optimization of photosensitizers/light parameters. Interdisciplinary research is needed to address these limitations and scale applications in healthcare, food safety, and environmental decontamination.
4.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
5.Zinc Finger Protein 639 Expression Is a Novel Prognostic Determinant in Breast Cancer
Fang LEE ; Shih-Ping CHENG ; Ming-Jen CHEN ; Wen-Chien HUANG ; Yi-Min LIU ; Shao-Chiang CHANG ; Yuan-Ching CHANG
Journal of Breast Cancer 2025;28(2):86-98
Purpose:
Zinc finger protein 639 (ZNF639) is often found within the overlapping amplicon of PIK3CA, and previous studies suggest its involvement in the pathogenesis of esophageal and oral squamous cell carcinomas. However, its expression and significance in breast cancer remain uncharacterized.
Methods:
Immunohistochemical analysis of ZNF639 was performed using tissue microarrays.Functional studies, including colony formation, Transwell cell migration, and in vivo metastasis, were conducted on breast tumor cells with ZNF639 knockdown via small interfering RNA transfection.
Results:
Reduced ZNF639 immunoreactivity was observed in 82% of the breast cancer samples, independent of hormone receptor and human epidermal growth factor receptor 2 status. In multivariate Cox regression analyses, ZNF639 expression was associated with favorable survival outcomes, including recurrence-free survival (hazard ratio, 0.35; 95% confidence interval [CI], 0.14–0.89) and overall survival (hazard ratio, 0.41; 95% CI, 0.16– 1.05). ZNF639 knockdown increased clonogenicity, cell motility, and lung metastasis in NOD/ SCID mice. Following the ZNF639 knockdown, the expression of Snail1, vimentin, and C-C chemokine ligand 20 (CCL20) was upregulated, and the changes in cell phenotype mediated by ZNF639 were reversed by the subsequent knockdown of CCL20.
Conclusion
Low ZNF639 expression is a novel prognostic factor for recurrence-free survival in patients with breast cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
8.Mechanism of Modified Si Junzitang and Shashen Maidong Tang in Improving Sensitivity of Cisplatin in EGFR-TKI Resistant Lung Adenocarcinoma Cells Based on Aerobic Glycolysis
Yanping WEN ; Yi JIANG ; Liping SHEN ; Haiwei XIAO ; Xiaofeng YANG ; Surui YUAN ; Lingshuang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):39-46
ObjectiveTo investigate the mechanism of modified Si Junzitang and Shashen Maidong Tang [Yiqi Yangyin Jiedu prescription (YQYYJD)] in enhancing the sensitivity of cisplatin in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI)-resistant lung adenocarcinoma cells based on aerobic glycolysis. MethodsThe effects of different concentrations of YQYYJD (0, 2, 3, 4, 5, 6, 7, 8 g·L-1) and cisplatin (0, 3, 6, 9, 12, 15, 18, 21, 24, 27 mg·L-1) on the proliferation and activity of PC9/GR cells were detected by the cell counting kit-8 (CCK-8) assay after 24 hours of intervention. The half-maximal inhibitory concentration (IC50) for PC9/GR cells was calculated to determine the concentrations used in subsequent experiments. PC9/GR cells were divided into blank group (complete medium), YQYYJD group (5 g·L-1), cisplatin group (12 mg·L-1), and combined group (YQYYJD 5 g·L-1 + cisplatin 12 mg·L-1). After 24 hours of intervention, cell viability was measured using CCK-8 assay. Cell proliferation was assessed by colony formation assay, and cell migration was evaluated by scratch and Transwell assays. Glucose consumption, lactate production, and adenosine triphosphate (ATP) levels were measured by colorimetric assays. The expression levels of glycolysis-related proteins, including hexokinase 2 (HK2), phosphofructokinase P (PFKP), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), glucose transporter 1 (GLUT1), and monocarboxylate transporter 4 (MCT4), were determined by Western blot. ResultsBoth YQYYJD and cisplatin inhibited the viability of PC9/GR cells in a concentration-dependent manner. The IC50 of PC9/GR cells for YQYYJD and cisplatin were 5.15 g·L-1 and 12.91 mg·L-1, respectively. In terms of cell proliferation, compared with the blank group, the cell survival rate and the number of colonies formed in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in cell survival rate and colony formation (P<0.01). In terms of cell migration, compared with the blank group, the cell migration rate and the number of cells passing through the Transwell membrane in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group exhibited a further significant reduction in cell migration rate and the number of cells passing through the Transwell membrane (P<0.01). In terms of glycolysis, compared with the blank group, glucose consumption, lactate production, and ATP levels in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in glucose consumption, lactate production, and ATP levels (P<0.05). Compared with the blank group, the protein expression levels of HK2, PFKP, PKM2, and LDHA in the YQYYJD, cisplatin, and combined groups were significantly decreased (P<0.01). The combined group showed a further significant reduction in the expression levels of these proteins compared with the YQYYJD and cisplatin groups (P<0.01). No significant differences were observed in the protein expression levels of GLUT1 and MCT4 among the groups. ConclusionYQYYJD can synergistically inhibit the proliferation and migration of PC9/GR cells and enhance their sensitivity to cisplatin. The mechanism may be related to the downregulation of the expression of glycolysis-related rate-limiting enzymes, including HK2, PFKP, PKM2, and LDHA, thereby inhibiting glycolysis.
9.Effect of Yiqi Yangyin Jiedu Prescription on sPD-L1 in Peripheral Blood of Patients Treated with EGFR-TKIs and Prognosis Analysis
Liping SHEN ; Yuqing CAI ; Yanping WEN ; Yi JIANG ; Lingshuang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):219-226
ObjectiveTo observe the prognosis effect of soluble programmed death ligand-1(sPD-L1) in treating patients with advanced lung adenocarcinoma treated with epidermal growth factor receptor-tyrosine kinase inhibitors(EGFR-TKIs) and the influence of Yiqi Yangyin Jiedu prescription. MethodA prospective cohort-controlled study was conducted to enroll patients treated with EGFR-TKIs in the first line of treatment,who were admitted to the Oncology Department of Longhua Hospital and Shanghai Chest Hospital from May 1st, 2021 to June 30th, 2023, and they were evaluated as non-progressive and identified with deficiency of Qi and Yin after one month of treatment. The patients were divided into an exposed group (EGFR-TKIs combined with Yiqi Yangyin Jiedu prescription) and a non-exposed group (EGFR-TKIs alone)according to whether or not they were treated with Yiqi Yangyin Jiedu prescription and were treated until disease progression, or death and intolerable adverse reactions occurred. The enzyme-linked immunosorbent assay (ELISA) was applied to detect the level of sPD-L1 in patients at the time of enrollment and disease progression,and Cox risk proportionality model was used to analyze the independent prognostic factors affecting disease progression of patients treated with EGFR-TKIs. ResultA total of 90 patients (39 in the exposed group and 51 in the non-exposed group) undergoing disease progression after EGFR-TKI treatment were enrolled. At the time of enrolment and after disease progression,the levels of serum sPD-L1 in the 90 patients were 12.06 (27.54) ng·L-1 and 41.99 (62.93) ng·L-1,respectively. Compared with that at the time of enrollment, the serum sPD-L1 level in the 90 patients was significantly increased after disease progression (P<0.01). The serum sPD-L1 level in patients in the exposed group was 12.27 (24.78) ng·L-1 and 29.57 (61.12)ng·L-1 respectively at the time of enrolment and after disease progression. In the non-exposed group, patients had serum sPD-L1 levels of 11.81 (28.46) ng·L-1 and 49.54 (74.12) ng·L-1 respectively at the time of enrolment and after disease progression. Compared with that at the time of enrollment, the serum sPD-L1 level in the two groups of patients was significantly increased after disease progression (P<0.01). In addition, compared with that in the non-exposed group, the sPD-L1 level in the exposed group was greatly reduced after disease progression(P<0.01). Cox multifactorial analysis showed that sPD-L1 level and age at the time of enrolment were associated with patients' progression-free survival(PFS),and that low levels of sPD-L1 (<12.06 ng·L-1) prolonged the PFS and reduced the risk of disease progression in patients treated with EGFR-TKIs compared with high levels of sPD-L1. ConclusionElevated sPD-L1 level is a poor prognostic factor for the long-term efficacy of EGFR-TKIs,and treatment with Yiqi Yangiin Jiedu prescription can down-regulate sPD-L1 level of patients treated with EGFR-TKIs.
10.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.

Result Analysis
Print
Save
E-mail