1.Mechanisms of Improving Hippocampal Synaptic Plasticity Through GLP-1/GLP-1r Pathway to Alleviate Anxiety and Depression-like Behaviors in Chronic Restraint Stress Rats by Xiaoyaosan
Hao WANG ; Yanan YAN ; Jiepeng WANG ; Chaoyi FANG ; Fang FANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):34-42
ObjectiveTo observe the effects of Xiaoyaosan on glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1r) and protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathways in the hippocampal CA1 region of rats under chronic restraint stress (CRS),and to explore the mechanism of this formula to alleviate anxiety and depression-like behaviors. Methods40 specific pathogen-free male Sprague-Dawley (SD) rats were randomly divided into normal,model,Xiaoyaosan,and fluoxetine groups,with 10 rats in each group. CRS was used to induce anxiety and depression-like behaviors. The rats in the Xiaoyaosan group were gavaged with aqueous solution of traditional Chinese medicine formula granules (7.36 g·kg-1·d-1),while those in the fluoxetine group were gavaged with aqueous solution of fluoxetine (2 mg·kg-1·d-1). Body weight was measured on days 0,7,14,and 21 of the experiment. On days 0 and 22 of the experiment,the sucrose preference test (SPT),forced swimming test (FST),and open field test (OFT) were performed. The pathological morphology of the hippocampal CA1 region was observed by Nissl staining. The relative mRNA expression of post-synaptic density protein-95 (PSD95) and synapsin (SYP) was detected by reverse transcription quantitative real-time polymerase chain reaction. Immunohistochemistry and Western blot were used to detect expression of proteins in the GLP-1/GLP-1r and PKA/CREB/BDNF pathways in the hippocampal CA1 region. ResultsAfter CRS modeling,compared with the normal group,the rats of the model group had anxiety and depression-like behavioral manifestations,neuronal damage in the hippocampal CA1 region,significantly downregulated expression of synaptic plasticity markers PSD95 and SYP genes (P<0.01),and inhibition of GLP-1/GLP-1r and PKA/CREB/BDNF signaling pathways (P<0.05,P<0.01). Compared with the model group,the Xiaoyaosan group exhibited alleviated anxiety and depression-like behaviors,reduced neuronal damage in the hippocampal CA1 region, significantly increased expression of PSD95 and SYP genes (P<0.01),and the activation of the GLP-1/GLP-1r and PKA/CREB/BDNF signaling pathways (P<0.05,P<0.01). ConclusionXiaoyaosan can alleviate anxiety and depression-like behaviors in CRS rats by improving synaptic plasticity in the hippocampal CA1 region. The mechanisms may be related to the activation of the GLP-1/GLP-1r pathway and its mediated PKA/CREB/BDNF signaling pathway by the formula.
2.Quercetin Ameliorates Gouty Arthritis in Rats via ROS/NLRP3/IL-1β Signaling Pathway
Baowei FENG ; Yan WANG ; Chang LI ; Yujing ZHANG ; Dingxing FAN ; Xin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):145-153
ObjectiveTo investigate the effect of quercetin on acute gouty arthritis (GA) in rats by inhibiting the reactive oxygen species (ROS)/NOD-like receptor protein 3 (NLRP3)/interleukin-1β (IL-1β) signaling pathway. MethodsSixty SPF-grade male SD rats were randomized into normal, model, colchicine (0.3 mg·kg-1), and low-, medium-, and high-dose (25, 50, 100 mg·kg-1, respectively) quercetin groups (n=10). The rats in the dosing groups were administrated with the corresponding drugs (10 mL·kg-1) by gavage once a day for one week. An equal volume of normal saline was given by gavage to rats in normal and model groups. One hour after drug administration on day 5, an acute GA model was established in other groups except the control group via intra-articular injection of monosodium urate (MSU) suspension into the right posterior ankle joint cavity. The joint swelling and gait were scored at the time points of 6, 12, 24, 48 h after modeling. Histopathological alterations in the ankle joint tissue from each group were assessed by hematoxylin-eosin (HE) staining. Malondialdehyde (MDA), xanthine oxidase (XOD), and total superoxide dismutase (T-SOD) assay kits were used to assess the levels of MDA, XOD, and T-SOD in the serum. The levels of tumor interleukin-6 (IL-6), necrosis factor-α (TNF-α), and IL-1β in the rat serum, as well as ROS in the ankle joint tissue, were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was performed to determine the protein levels of NLRP3, thioredoxin-interacting protein (TXNIP), apoptosis-associated speck-like protein containing a CARD domain (ASC), precursor cysteinyl aspartate-specific proteinase-1 (pro-Caspase-1), cleaved Caspase-1 (Caspase-1 p20), and IL-1β in the ankle joint tissue. Real-time PCR was employed to assess the mRNA levels of TXNIP, NLRP3, ASC, IL-1β, and TNF-α in the ankle joint tissue. ResultsCompared with the normal group, the model group exhibited decreased spontaneous activity, mental fatigue, increased ankle joint swelling and gait scores (P<0.01), aggravated synovial tissue edema and inflammatory cell infiltration (P<0.01), elevated levels of XOD, MDA, TNF-α, IL-1β, and IL-6 in the serum and ROS in the joint tissue (P<0.01), a declined level of T-SOD (P<0.01), up-regulated protein levels of NLRP3, TXNIP, ASC, pro-Caspase-1, Caspase-1 p20, and IL-1β in the ankle joint tissue (P<0.01), and up-regulated mRNA levels of NLRP3, TXNIP, ASC, IL-1β, and TNF-α in the ankle joint tissue (P<0.01). Compared with the model group, the medium- and high-dose quercetin groups showed improved general conditions, decreased gait scores (P<0.05, P<0.01), reduced joint swelling (P<0.01), alleviated synovial tissue edema and inflammatory cell infiltration (P<0.05, P<0.01), lowered levels of XOD, MDA, TNF-α, IL-1β, and IL-6 in the serum and ROS in the joint tissue (P<0.01), increased levels of T-SOD (P<0.01), down-regulated protein levels of TXNIP, NLRP3, ASC, pro-Caspase-1, Caspase-1 p20, and IL-1β in the ankle joint tissue (P<0.05, P<0.01), and down-regulated mRNA levels of TXNIP, NLRP3, ASC, IL-1β, and TNF-α in the ankle joint tissue (P<0.01). Low-dose quercetin also ameliorated some of the above parameters (P<0.05, P<0.01). ConclusionQuercetin exerts anti-GA effects by blocking the ROS/NLRP3/IL-1β signaling pathway, downregulating NLRP3 inflammasome activation, and inhibiting the production of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6.
3.Sanren Runchang Formula Regulates Brain-gut Axis to Treat IBS-C: A Randomized Controlled Trial
Teng LI ; Xinrong FAN ; He YAN ; Zhuozhi GONG ; Mengxi YAO ; Na YANG ; Yuhan WANG ; Huikai HU ; Wei WEI ; Tao LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):154-161
ObjectiveTo observe the clinical efficacy of Sanren Runchang formula in treating constipation-predominant irritable bowel syndrome (IBS-C) by regulating the brain-gut axis and the effects of the formula on serum levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), and substance P (SP). MethodsA randomized controlled design was adopted, and 72 IBS-C patients meeting Rome Ⅳ criteria were randomized into observation and control groups (36 cases).The observation group received Sanren Runchang formula granules twice daily, and the control group received lactulose oral solution daily for 4 weeks. IBS Symptom Severity Scale (IBS-SSS), IBS Quality of Life Scale (IBS-QOL), and Bristol Stool Form Scale (BSFS) were used to assess clinical symptoms, and bowel movement frequency was recorded. The Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) were employed to evaluate psychological status. ELISA was employed to measure the serum levels of 5-HT, VIP, and SP. ResultsThe total response rate in the observation group was 91.67% (33/36), which was higher than that (77.78%, 28/36) in the control group (χ2=4.50, P<0.05). After treatment, both groups showed increased defecation frequency and BSFS scores, decreased IBS-SSS total score, abdominal pain and bloating scores, IBS-QOL health anxiety, anxiety, food avoidance, and behavioral disorders scores, SAS and SDS scores, serum 5-HT and VIP levels, and increased SP levels (P<0.05, P<0.01). Moreover, the observation group showed more significant changes in the indicators above than the control group (P<0.05, P<0.01). The SP level showed no significant difference between the two groups. During the 4-week follow-up, the recurrence rate was 5.88% in the observation group and 31.25% in the control group. No adverse events occurred in observation group, and 2 cases of mild diarrhea occurred in the control group. ConclusionSanren Runchang formula demonstrated definitive efficacy in alleviating gastrointestinal symptoms and improving the psychological status and quality of life in IBS-C patients, with a low recurrence rate. The formula can regulate serum levels of neurotransmitters such as 5-HT and VIP, suggesting its potential regulatory effect on the brain-gut axis through modulating neurotransmitters and neuropeptides. However, its complete mechanism of action requires further investigation through detection of additional brain-gut axis-related biomarkers.
4.Current status of proteomics research in diabetic retinopathy
Shun ZHOU ; Yan WANG ; Jing LENG ; Yong ZHAO
International Eye Science 2025;25(3):428-433
Diabetic retinopathy(DR)has emerged as the leading cause of vision loss among working-age people in many countries under the increasing prevalence of diabetes and the longevity of the population. The pathogenesis of DR is complicated and has not been fully elucidated at present, while the treatment methods of DR have not been greatly improved, mainly retinal laser photocoagulation, anti-vascular endothelial growth factor(VEGF)treatment and vitrectomy surgery. The current treatment methods not only have shortcomings, but also bring serious economic burden to patients. Therefore, new methods are needed to explore the pathogenesis of DR, discover new treatments or improve current treatments, and improve the satisfaction of DR patients. In recent years, the identification and quantification of proteins expressed in blood, retina, vitreous humor, aqueous humor, and tears of all observable DR patients and DR rats and differentially expressed proteins after drug intervention have provided new ideas for further exploring the pathogenesis, diagnosis and treatment of DR with the rise of proteomics, which put forward new insights into early detection and treatment.The proteomics of DR in recent years are reviewed, in order to provide new ideas for the diagnosis and treatment of DR.
5.Advances in inflammatory response mechanism and anti-inflammatory treatment with dry eye disease
Pingping WANG ; Fan JIANG ; Simin LI ; Dongxia YAN ; Juan CHENG
International Eye Science 2025;25(3):440-445
In recent years, the incidence of dry eye disease(DED)is increasing, positioning it as one of the most prevalent diseases affecting the ocular surface. Inflammatory response is the pathological basis of DED, involving various inflammatory mediators and inflammatory signaling pathways. Consequently, anti-inflammatory treatment emerges as a fundamental strategy for preventing and managing DED. This review summarizes the classic inflammatory factors involved in the development and progression of DED, including interleukins, tumor necrosis factor, matrix metalloproteinases, chemokines, and cell adhesion molecules. It also discusses the relevant inflammatory signaling pathways: the MAPKs pathway, NF-κB pathway, Wnt pathway and TLR pathway. Additionally, this review addresses the mechanisms of action and alterations in relevant biomarkers associated with current first-line recommended anti-inflammatory therapies, including corticosteroids, immunosuppressants, nonsteroidal anti-inflammatory drugs, and traditional Chinese medicine approaches to inflammation management. This comprehensive overview aims to enhance understanding of the inflammatory mechanisms underlying DED while exploring future therapeutic prospects.
6.Current status of proteomics research in diabetic retinopathy
Shun ZHOU ; Yan WANG ; Jing LENG ; Yong ZHAO
International Eye Science 2025;25(3):428-433
Diabetic retinopathy(DR)has emerged as the leading cause of vision loss among working-age people in many countries under the increasing prevalence of diabetes and the longevity of the population. The pathogenesis of DR is complicated and has not been fully elucidated at present, while the treatment methods of DR have not been greatly improved, mainly retinal laser photocoagulation, anti-vascular endothelial growth factor(VEGF)treatment and vitrectomy surgery. The current treatment methods not only have shortcomings, but also bring serious economic burden to patients. Therefore, new methods are needed to explore the pathogenesis of DR, discover new treatments or improve current treatments, and improve the satisfaction of DR patients. In recent years, the identification and quantification of proteins expressed in blood, retina, vitreous humor, aqueous humor, and tears of all observable DR patients and DR rats and differentially expressed proteins after drug intervention have provided new ideas for further exploring the pathogenesis, diagnosis and treatment of DR with the rise of proteomics, which put forward new insights into early detection and treatment.The proteomics of DR in recent years are reviewed, in order to provide new ideas for the diagnosis and treatment of DR.
7.Advances in inflammatory response mechanism and anti-inflammatory treatment with dry eye disease
Pingping WANG ; Fan JIANG ; Simin LI ; Dongxia YAN ; Juan CHENG
International Eye Science 2025;25(3):440-445
In recent years, the incidence of dry eye disease(DED)is increasing, positioning it as one of the most prevalent diseases affecting the ocular surface. Inflammatory response is the pathological basis of DED, involving various inflammatory mediators and inflammatory signaling pathways. Consequently, anti-inflammatory treatment emerges as a fundamental strategy for preventing and managing DED. This review summarizes the classic inflammatory factors involved in the development and progression of DED, including interleukins, tumor necrosis factor, matrix metalloproteinases, chemokines, and cell adhesion molecules. It also discusses the relevant inflammatory signaling pathways: the MAPKs pathway, NF-κB pathway, Wnt pathway and TLR pathway. Additionally, this review addresses the mechanisms of action and alterations in relevant biomarkers associated with current first-line recommended anti-inflammatory therapies, including corticosteroids, immunosuppressants, nonsteroidal anti-inflammatory drugs, and traditional Chinese medicine approaches to inflammation management. This comprehensive overview aims to enhance understanding of the inflammatory mechanisms underlying DED while exploring future therapeutic prospects.
8.The Neurobiological Mechanisms of Runner’s High
Yun-Teng WANG ; Jia-Qi LIANG ; Wan-Tang SU ; Li ZHAO ; Yan LI
Progress in Biochemistry and Biophysics 2025;52(2):358-373
“Runner’s high” refers to a momentary sense of pleasure that suddenly appears during running or other exercise activities, characterized by anti-anxiety, pain relief, and other symptoms. The neurobiological mechanism of “runner’s high” is unclear. This review summarizes human and animal models for studying “runner’s high”, analyzes the neurotransmitters and neural circuits involved in runner’s high, and elucidates the evidence and shortcomings of researches related to “runner’s high”. This review also provides prospects for future research. Research has found that exercise lasting more than 30 min and with an intensity exceeding 70% of the maximum heart rate can reach a “runner’s high”. Human experiments on “runner’s high” mostly use treadmill exercise intervention, and evaluate it through questionnaire surveys, measurement of plasma AEA, miRNA and other indicators. Animal experiments often use voluntary wheel running intervention, and evaluate it through behavioral experiments such as conditional place preference, light dark box experiments (anxiety), hot plate experiments (pain sensitivity), and measurement of plasma AEA and other indicators. Dopamine, endogenous opioid peptides, endogenous cannabinoids, brain-derived neurotrophic factor, and other substances increase after exercise, which may be related to the “runner’s high”. However, attention should be paid to the functional differences of these substances in the central and peripheral regions, as well as in different brain regions. Moreover, current studies have not identified the targets of the neurotransmitters or neural factors mentioned above, and further in-depth researches are needed. The mesolimbic dopamine system, prefrontal cortex-nucleus accumbens projection, ventral hippocampus-nucleus accumbens projection, red nucleus-ventral tegmental area projection, cerebellar-ventral tegmental area projection, and brain-gut axis may be involved in the regulation of runner’s high, but there is a lack of direct evidence to prove their involvement. There are still many issues that need to be addressed in the research on the neurobiological mechanisms of “runner’s high”. (1) Most studies on “runner’s high” involve one-time exercise, and the characteristics of changes in “runner’s high” during long-term exercise still need to be explored. (2) The using of scales to evaluate subjects lead to the lacking of objective indicators. However, some potential biomarkers (such as endocannabinoids) have inconsistent characteristics of changes after one-time and long-term exercise. (3) The neurotransmitters involved in the formation of the “runner’s high” all increase in the peripheral and/or central nervous system after exercise. Attention should be paid to whether peripheral substances can enter the blood-brain barrier and the binding effects of neurotransmitters to different receptors are completely different in different brain regions. (4) Most of the current evidence show that some brain regions are activated after exercise. Is there a functional circuit mediating “runner’s high” between these brain regions? (5) Although training at a specific exercise intensity can lead to “runner’s high”, most runners have not experienced “runner’s high”. Can more scientific training methods or technological means be used to make it easier for people to experience the “runner’s high” and thus be more willing to engage in exercise? (6) The “runner’s high” and “addiction” behaviors are extremely similar, and there are evidences that exercise can reverse addictive behaviors. However, why is there still a considerable number of people in the sports population and even athletes who smoke or use addictive drugs instead of pursuing the “pleasure” brought by exercise? Solving the problems above is of great significance for enhancing the desire of exercise, improving the clinical application of neurological and psychiatric diseases through exercise, and enhancing the overall physical fitness of the population.
9.Research progress on ANXA3 gene and protein
Tingting FENG ; Jingxiang ZHANG ; Yan WANG ; Weiheng XU ; Junping ZHANG
Journal of Pharmaceutical Practice and Service 2025;43(2):47-50
Annexin A3(ANXA3)is a member of the membrane associated protein family. It has two subtypes of 36 kDa and 33 kDa. Its gene is located on the fourth chromosome of human. ANXA3, widely expressed in human bone marrow, lung, placenta, prostate and thyroid, is closely related to several biological processes such as exoplasmosis, vascular production, fat cell maturity, and white blood cell migration. Studies have found that ANXA3 is abnormally expressed in various diseases including cancer, cardiovascular disease and inflammation. It can regulate multiple signaling pathways such as JNK, NF-κB, PI3K/AKT, and may become a potential drug target for treatment of related diseases. The structure, functions, the link with diseases and related mechanisms of ANXA3 were summarized in this paper, which could provide reference for ANXA3 related research.
10.Study on the effect of berberine combined with fluconazole on fluconazole-tolerant Candida albcians strains
Zecheng SONG ; Shanshan MA ; Qiaoling HU ; Hua ZHONG ; Yan WANG
Journal of Pharmaceutical Practice and Service 2025;43(2):87-91
Objective To investigate the combined effect of berberine (BBR) and fluconazole (FLC) on FLC-tolerant Candida albicans in vitro. Methods The sensitivity of 8 strains of Candida albicans to FLC was assessed by determining their minimal inhibitory concentration (MIC) using broth microdilution method. FLC-tolerant strains were screened from FLC-sensitive strains by disk diffusion assay. The effect of BBR combined with FLC on FLC-tolerant Candida albicans was investigated by disk diffusion assay. Results All eight strains of Candida albicans exhibited sensitivity to FLC, with minimal inhibitory concentration (MIC50) values below 0.5 μg/ml. Strains Y0109, 9821, 7879, 7654, and 9296 displayed colony growth in the inhibition zone after 48 h of constant temperature incubation, indicating FLC tolerance. When strains Y0109 and 9821 were subjected to a combination of BBR and FLC, the number of colonies within the inhibition zone decreased progressively with the increase of BBR concentration following a 48 h constant temperature culture. The inhibition zone became clear with the increasing of BBR concentration and increased with the increase of FLC loading, which showed a dose-dependent relationship. Conclusion The BBR combined with FLC demonstrated efficacy against FLC-tolerant strains.

Result Analysis
Print
Save
E-mail