1.Quercetin Ameliorates Gouty Arthritis in Rats via ROS/NLRP3/IL-1β Signaling Pathway
Baowei FENG ; Yan WANG ; Chang LI ; Yujing ZHANG ; Dingxing FAN ; Xin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):145-153
ObjectiveTo investigate the effect of quercetin on acute gouty arthritis (GA) in rats by inhibiting the reactive oxygen species (ROS)/NOD-like receptor protein 3 (NLRP3)/interleukin-1β (IL-1β) signaling pathway. MethodsSixty SPF-grade male SD rats were randomized into normal, model, colchicine (0.3 mg·kg-1), and low-, medium-, and high-dose (25, 50, 100 mg·kg-1, respectively) quercetin groups (n=10). The rats in the dosing groups were administrated with the corresponding drugs (10 mL·kg-1) by gavage once a day for one week. An equal volume of normal saline was given by gavage to rats in normal and model groups. One hour after drug administration on day 5, an acute GA model was established in other groups except the control group via intra-articular injection of monosodium urate (MSU) suspension into the right posterior ankle joint cavity. The joint swelling and gait were scored at the time points of 6, 12, 24, 48 h after modeling. Histopathological alterations in the ankle joint tissue from each group were assessed by hematoxylin-eosin (HE) staining. Malondialdehyde (MDA), xanthine oxidase (XOD), and total superoxide dismutase (T-SOD) assay kits were used to assess the levels of MDA, XOD, and T-SOD in the serum. The levels of tumor interleukin-6 (IL-6), necrosis factor-α (TNF-α), and IL-1β in the rat serum, as well as ROS in the ankle joint tissue, were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was performed to determine the protein levels of NLRP3, thioredoxin-interacting protein (TXNIP), apoptosis-associated speck-like protein containing a CARD domain (ASC), precursor cysteinyl aspartate-specific proteinase-1 (pro-Caspase-1), cleaved Caspase-1 (Caspase-1 p20), and IL-1β in the ankle joint tissue. Real-time PCR was employed to assess the mRNA levels of TXNIP, NLRP3, ASC, IL-1β, and TNF-α in the ankle joint tissue. ResultsCompared with the normal group, the model group exhibited decreased spontaneous activity, mental fatigue, increased ankle joint swelling and gait scores (P<0.01), aggravated synovial tissue edema and inflammatory cell infiltration (P<0.01), elevated levels of XOD, MDA, TNF-α, IL-1β, and IL-6 in the serum and ROS in the joint tissue (P<0.01), a declined level of T-SOD (P<0.01), up-regulated protein levels of NLRP3, TXNIP, ASC, pro-Caspase-1, Caspase-1 p20, and IL-1β in the ankle joint tissue (P<0.01), and up-regulated mRNA levels of NLRP3, TXNIP, ASC, IL-1β, and TNF-α in the ankle joint tissue (P<0.01). Compared with the model group, the medium- and high-dose quercetin groups showed improved general conditions, decreased gait scores (P<0.05, P<0.01), reduced joint swelling (P<0.01), alleviated synovial tissue edema and inflammatory cell infiltration (P<0.05, P<0.01), lowered levels of XOD, MDA, TNF-α, IL-1β, and IL-6 in the serum and ROS in the joint tissue (P<0.01), increased levels of T-SOD (P<0.01), down-regulated protein levels of TXNIP, NLRP3, ASC, pro-Caspase-1, Caspase-1 p20, and IL-1β in the ankle joint tissue (P<0.05, P<0.01), and down-regulated mRNA levels of TXNIP, NLRP3, ASC, IL-1β, and TNF-α in the ankle joint tissue (P<0.01). Low-dose quercetin also ameliorated some of the above parameters (P<0.05, P<0.01). ConclusionQuercetin exerts anti-GA effects by blocking the ROS/NLRP3/IL-1β signaling pathway, downregulating NLRP3 inflammasome activation, and inhibiting the production of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6.
2.Long-term Outcomes of Endoscopic Radiofrequency Ablation versus Endoscopic Submucosal Dissection for Widespread Superficial Esophageal Squamous Cell Neoplasia
Xin TANG ; Qian-Qian MENG ; Ye GAO ; Chu-Ting YU ; Yan-Rong ZHANG ; Yan BIAN ; Jin-Fang XU ; Lei XIN ; Wei WANG ; Han LIN ; Luo-Wei WANG
Gut and Liver 2025;19(2):198-206
Background/Aims:
Endoscopic radiofrequency ablation (ERFA) is a treatment option for superficial esophageal squamous cell neoplasia (ESCN), with a relatively low risk of stenosis; however, the long-term outcomes remain unclear. We aimed to compare the long-term outcomes of patients with widespread superficial ESCN who underwent endoscopic submucosal dissection (ESD) or ERFA.
Methods:
We retrospectively analyzed the clinical data of patients with superficial ESCN who underwent ESD or ERFA between January 2015 and December 2021. The primary outcome measure was recurrence-free survival.
Results:
Ninety-two and 33 patients with superficial ESCN underwent ESD and ERFA, respectively. The en bloc, R0, and curative resection rates for ESD were 100.0%, 90.2%, and 76.1%, respectively. At 12 months, the complete response rate was comparable between the two groups (94.6% vs 90.9%, p=0.748). During a median follow-up of 66 months, recurrence-free survival was significantly longer in the ESD group than in the ERFA group (p=0.004), while no significant differences in overall survival (p=0.845) and disease-specific survival (p=0.494) were observed.Preoperative diagnosis of intramucosal cancer (adjusted hazard ratio, 5.55; vs high-grade intraepithelial neoplasia) was an independent predictor of recurrence. Significantly fewer patients in the ERFA group experienced stenosis compare to ESD group (15.2% vs 38.0%, p=0.016).
Conclusions
The risk of recurrence was higher for ERFA than ESD for ESCN but overall survival was not affected. The risk of esophageal stenosis was significantly lower for patients who underwent ERFA.
3.PANoptosis: a New Target for Cardiovascular Diseases
Xin-Nong CHEN ; Ying-Xi YANG ; Xiao-Chen GUO ; Jun-Ping ZHANG ; Na-Wen LIU
Progress in Biochemistry and Biophysics 2025;52(5):1113-1125
The innate immune system detects cellular stressors and microbial infections, activating programmed cell death (PCD) pathways to eliminate intracellular pathogens and maintain homeostasis. Among these pathways, pyroptosis, apoptosis, and necroptosis represent the most characteristic forms of PCD. Although initially regarded as mechanistically distinct, emerging research has revealed significant crosstalk among their signaling cascades. Consequently, the concept of PANoptosis has been proposed—an inflammatory cell death pathway driven by caspases and receptor-interacting protein kinases (RIPKs), and regulated by the PANoptosome, which integrates key features of pyroptosis, apoptosis, and necroptosis. The core mechanism of PANoptosis involves the assembly and activation of the PANoptosome, a macromolecular complex composed of three structural components: sensor proteins, adaptor proteins, and effector proteins. Sensors detect upstream stimuli and transmit signals downstream, recruiting critical molecules via adaptors to form a molecular scaffold. This scaffold activates effectors, triggering intracellular signaling cascades that culminate in PANoptosis. The PANoptosome is regulated by upstream molecules such as interferon regulatory factor 1 (IRF1), transforming growth factor beta-activated kinase 1 (TAK1), and adenosine deaminase acting on RNA 1 (ADAR1), which function as molecular switches to control PANoptosis. Targeting these switches represents a promising therapeutic strategy. Furthermore, PANoptosis is influenced by organelle functions, including those of the mitochondria, endoplasmic reticulum, and lysosomes, highlighting organelle-targeted interventions as effective regulatory approaches. Cardiovascular diseases (CVDs), the leading global cause of morbidity and mortality, are profoundly impacted by PCD. Extensive crosstalk among multiple cell death pathways in CVDs suggests a complex regulatory network. As a novel cell death modality bridging pyroptosis, apoptosis, and necroptosis, PANoptosis offers fresh insights into the complexity of cell death and provides innovative strategies for CVD treatment. This review summarizes current evidence linking PANoptosis to various CVDs, including myocardial ischemia/reperfusion injury, myocardial infarction, heart failure, arrhythmogenic cardiomyopathy, sepsis-induced cardiomyopathy, cardiotoxic injury, atherosclerosis, abdominal aortic aneurysm, thoracic aortic aneurysm and dissection, and vascular toxic injury, thereby providing critical clinical insights into CVD pathophysiology. However, the current understanding of PANoptosis in CVDs remains incomplete. First, while PANoptosis in cardiomyocytes and vascular smooth muscle cells has been implicated in CVD pathogenesis, its role in other cell types—such as vascular endothelial cells and immune cells (e.g., macrophages)—warrants further investigation. Second, although pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are known to activate the PANoptosome in infectious diseases, the stimuli driving PANoptosis in CVDs remain poorly defined. Additionally, methodological challenges persist in identifying PANoptosome assembly in CVDs and in establishing reliable PANoptosis models. Beyond the diseases discussed, PANoptosis may also play a role in viral myocarditis and diabetic cardiomyopathy, necessitating further exploration. In conclusion, elucidating the role of PANoptosis in CVDs opens new avenues for drug development. Targeting this pathway could yield transformative therapies, addressing unmet clinical needs in cardiovascular medicine.
4.Multiparametric MRI to Predict Gleason Score Upgrading and Downgrading at Radical Prostatectomy Compared to Presurgical Biopsy
Jiahui ZHANG ; Lili XU ; Gumuyang ZHANG ; Daming ZHANG ; Xiaoxiao ZHANG ; Xin BAI ; Li CHEN ; Qianyu PENG ; Zhengyu JIN ; Hao SUN
Korean Journal of Radiology 2025;26(5):422-434
Objective:
This study investigated the value of multiparametric MRI (mpMRI) in predicting Gleason score (GS) upgrading and downgrading in radical prostatectomy (RP) compared with presurgical biopsy.
Materials and Methods:
Clinical and mpMRI data were retrospectively collected from 219 patients with prostate disease between January 2015 and December 2021. All patients underwent systematic prostate biopsy followed by RP. MpMRI included conventional diffusion-weighted and dynamic contrast-enhanced imaging. Multivariable logistic regression analysis was performed to analyze the factors associated with GS upgrading and downgrading after RP. Receiver operating characteristic curve analysis was used to estimate the area under the curve (AUC) to indicate the performance of the multivariable logistic regression models in predicting GS upgrade and downgrade after RP.
Results:
The GS after RP was upgraded, downgraded, and unchanged in 92, 43, and 84 patients, respectively. The AUCs of the clinical (percentage of positive biopsy cores [PBCs], time from biopsy to RP) and mpMRI models (prostate cancer [PCa] location, Prostate Imaging Reporting and Data System [PI-RADS] v2.1 score) for predicting GS upgrading after RP were 0.714 and 0.749, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, tPSA, PCa location, and PIRADS v2.1 score) was 0.816, which was larger than that of the clinical factors alone (P < 0.001). The AUCs of the clinical (age, percentage of PBCs, ratio of free/total PSA [F/T]) and mpMRI models (PCa diameter, PCa location, and PI-RADS v2.1 score) for predicting GS downgrading after RP were 0.749 and 0.835, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, F/T, PCa diameter, PCa location, and PI-RADS v2.1 score) was 0.883, which was larger than that of the clinical factors alone (P < 0.001).
Conclusion
Combining clinical factors and mpMRI findings can predict GS upgrade and downgrade after RP more accurately than using clinical factors alone.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Analysis of Changes on Volatile Components of Ligusticum sinense cv. Chaxiong Rhizome Before and After Wine Processing Based on Electronic Nose and HS-GC-MS
Wen ZHANG ; Peng ZHENG ; Jiangshan ZHANG ; Xiaolin XIAO ; Zaodan WU ; Li XIN ; Wenhui GONG ; Jinlian ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):173-181
ObjectiveBy comparing the composition and content of volatile components in raw products, wine-washed products and wine-fried products of Ligusticum sinense cv. Chaxiong rhizome(LSCR), to investigate the influence of wine processing on the volatile components of LSCR, in order to provide a basis for the development of quality standards for LSCR and its processed products. MethodsElectronic nose was used to identify the odors of LSCR, wine-washed and wine-fried LSCR, and their volatile components were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the relative mass fractions of these components were determined by peak area normalization method. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were performed on the obtained sample data by SIMCA 14.1 software, and the differential components of LSCR, wine-washed and wine-fried LSCR were screened according to the variable importance in the projection(VIP) value>1. Pearson correlation analysis was used to explore the relationship between volatile differential flavor components and electronic nose sensors. ResultsElectronic nose detection results showed that there were significant differences in the odors of LSCR, wine-washed and wine-fried LSCR, mainly reflected in the sensors S2, S4, S5, S6, S11, S12, S13. And a total of 62 compounds were identified from LSCR and its wine-processed products, among which 46, 50 and 51 compounds were identified from LSCR, wine-fried and wine-washed LSCR, respectively. There were 21 differential components between the raw products and wine-fried products, of which 10 components were increased and 11 were decreased after processing. There were 20 differential components between the raw products and wine-washed products, of which 11 constituents increased and 9 decreased after processing. There were 17 differential components between the wine-wash products and wine-fried products. Compared with the wine-washed products, the contents of 13 components in the wine-fried products increased, and the contents of 4 components decreased. The increasing trend of the content of phthalides in the wine-washed products was more obvious than that in the wine-fried products, but the content of total volatile components was higher in the wine-fried products than the wine-washed products. Correlation analysis showed that there were different degrees of correlation between the 7 differential sensors of electronic nose and 24 differential volatile components, mainly phthalides and olefins. ConclusionThe odor and the content of volatile components in LSCR changed obviously after wine processing, and n-butylphthalide, Z-butylidenephthalide and E-ligustilide can be used as the candidate differential markers of volatile components in LSCR before and after wine processing.
7.Effect of "Fahan" on Metabolites of Blumea balsamifera Analyzed by Non-targeted Metabolomics
Jiayuan CAO ; Xin XU ; Xiangsheng ZHANG ; Bingnan LIU ; Yongyao WEI ; Ke ZHONG ; Yuxin PANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):200-207
ObjectiveTo characterize the changes of metabolites of Blumea balsamifera in the process of sweating by non-targeted metabolomics, and to investigate the influence of sweating processing on the constituents of B. balsamifera. MethodsUltra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) metabolomics was used to identify the metabolites in no sweating group(F1), sweating 2 d group(F2) and sweating 4 d group(F3), the differences of metabolites between the groups were compared by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), and differential metabolites were screened according to the variable importance in the projection(VIP) value>1 and P<0.05, and the pathway enrichment of the differential metabolites was analyzed by Kyoto Encyclopedia of Genes and Genomes(KEGG). ResultsThe results of PCA and OPLS-DA showed a clear distinction between the three groups of samples, indicating significant differences in the compositions of the three groups of samples. A total of 433 differential metabolites were screened between the F1 and F2, with 154 up-regulated and 279 down-regulated, the significant up-regulated metabolites were tangeritin, 5-O-demethylnobiletin and so on, while the metabolites with significant down-regulation included alternariol, fortunellin, etc. A total of 379 differential metabolites were screened between the F2 and F3, with 150 up-regulated and 229 down-regulated, the significant up-regulated metabolites were isoimperatorin, helianyl octanoate and so on, and the significant down-regulated metabolites were hovenoside I, goyasaponin Ⅲ, etc. KEGG pathway enrichment analysis showed that tyrosine metabolism, isoquinoline alkaloid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism, valine, leucine and isoleucine biosynthesis, pantothenate and coenzyme A biosynthesis may be the key pathways affecting metabolite differences of B. balsamifera after sweating treatment. ConclusionSweating can reduce the content of endophytic mycotoxins in B. balsamifera and has a great impact on the synthesis and metabolic pathways of total flavonoids and auxin. This study can provide a reference for the process research on the sweating conditions of B. balsamifera.
8.Immunity-inflammation Mechanism of Viral Pneumonia and Traditional Chinese Medicine Treatment Based on Theory of Healthy Qi and Pathogenic Qi
Zheyu LUAN ; Hanxiao WANG ; Xin PENG ; Yihao ZHANG ; Yunhui LI ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):239-247
Viral pneumonia is an infectious disease caused by virus invading the lung parenchyma and interstitial tissue and causing lung inflammation, with the incidence rising year by year. Traditional Chinese medicine (TCM) can treat viral pneumonia in a multi-component, multi-target, and holistic manner by targeting the core pathogenesis of pneumonia caused by different respiratory viruses, demonstrating minimal side effects and significant advantages. According to the theory of healthy Qi and pathogenic Qi in TCM, the struggle between healthy Qi and pathogenic Qi and the imbalance between immunity and inflammation run through the entire process of viral pneumonia, and the immunity-inflammation status at different stages of the disease reflects different relationships between healthy Qi and pathogenic Qi. Immune dysfunction leads to the deficiency of healthy Qi, causing viral infections. The struggle between healthy Qi and pathogenic Qi causes immunity-inflammation imbalance, leading to the onset of viral pneumonia. Inflammatory damage causes persistent accumulation of phlegm and stasis, leading to the progression of viral pneumonia. The cytokine storm causes immunodepletion, leading to the excess of pathogenic Qi and diminution of healthy Qi and the deterioration of viral pneumonia. After the recovery from viral pneumonia, there is a long-term imbalance between immunity and micro-inflammation, which results in healthy Qi deficiency and pathogenic Qi lingering. Healthy Qi deficiency and pathogenic Qi excess act as common core causes of pneumonia caused by different respiratory viruses. Clinical treatment should emphasize both replenishing healthy Qi and eliminating pathogenic Qi, helping to restore the balance between healthy Qi and pathogenic Qi as well as between immunity and inflammation, thus promoting the recovery of patients from viral pneumonia. According to the TCM theory of healthy Qi and pathogenic Qi, this article summarizes the immunity-inflammation mechanisms at different stages of viral pneumonia, and explores the application of the method of replenishing healthy Qi and eliminating pathogenic Qi in viral pneumonia. The aim is to probe into the scientific connotation of the TCM theory of healthy Qi and pathogenic Qi in viral pneumonia and provide ideas for the clinical application of the method of replenishing healthy Qi and eliminating pathogenic Qi to assist in the treatment of viral pneumonia.
9.Yishen Huashi Granules Protect Kidneys of db/db Mice via p38 MAPK Signaling Pathway
Kaidong ZHOU ; Sitong WANG ; Ge JIN ; Yanmo CAI ; Xin ZHOU ; Yunhua LIU ; Xinxue ZHANG ; Min ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):58-68
ObjectiveTo explore the mechanism of Yishen Huashi granules in alleviating renal tubular epithelial cell injury and relieving diabetic kidney disease by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. MethodsThe db/db mice of 12 weeks old were randomly assigned into model , dapagliflozin (1.6 mg·kg-1), and Yishen Huashi granules (4.7 g·kg-1), and db/m mice were used as the control group. The general conditions of mice were observed, and fasting blood glucose and 24-h urinary protein and albumin-to-creatinine ratio (ACR) were measured at weeks 0 and 12 of administration. After 12 weeks of treatment, the levels of serum creatinine (SCr), blood urea (UREA), triglycerides (TG), total cholesterol (TC), and low density lipoprotein (LDL) were measured. The pathological changes in the renal tissue were observed by hematoxylin-eosin (HE) staining, Periodic acid-Schiff (PAS) staining, Mallory staining, and transmission electron microscopy. Real-time PCR was employed to determine the mRNA levels of monocyte chemotactic protein-1 (MCP-1) and CC chemokine receptor-2 (CCR2) in the renal tissue of mice. The immunohistochemical assay was employed to examine the expression of p38, phospho-p38 (p-p38), MCP-1, and CCR2 in the renal tissue of mice. Western blotting was employed to measure the protein levels of p-p38, p38, MCP-1, and CCR2 in the renal tissue of mice.HK-2 cells cultured in vitro were grouped as follows: negative control, high glucose(30 mmol·L-1), Yishen Huashi granule-containing serum, and SB203580. After 48 h of cell culture in each group, RNA were extracted and the levels of MCP-1, and CCR2 mRNA were determined by Real-time PCR,proteins were extracted and the levels of p38, p-p38, MCP-1, and CCR2 were determined by Western blot. ResultsThe in vivo experiments showed that before treatment, other groups had higher body weight, blood glucose level, 24 h urinary protein, and ACR than the control group (P<0.05,P<0.01). After 12 weeks of treatment, compared with the model group, the Yishen Huashi granules group showed improved general conditions, a decreasing trend in body weight, lowered levels of blood glucose, 24-h urinary protein, and ACR (P<0.01), reduced SCr and UREA (P<0.01), and declined levels of TC, TG, and LDL (P<0.05,P<0.01). Compared with the model group, the Yishen Huashi granules group showed alleviated damage and interstitial fibrosis in the renal tissue as well as reductions in glomerular foot process fusion and basement membrane thickening. Moreover, the Yishen Huashi granules group showed down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01), reduced positive expression of p-p38, MCP-1, and CCR2 (P<0.01), and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2 (P<0.05) in the renal tissue. The cell experiment showed that compared with the high glucose group, the Yishen Huashi granule-containing serum group showcased down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01) and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2(P<0.05,P<0.01). ConclusionYishen Huashi granules can regulate glucose-lipid metabolism, reduce 24 h urinary protein and ACR, improve the renal function, alleviate the renal tubule injury caused by high glucose, and protect renal tubule epithelial cells in db/db mice by reducing MCP-1/CCR2 activation via the p38 MAPK signaling pathway.
10.Differentiation and Treatment of Lipid Turbidity Disease Based on Theory of "Spleen Ascending and Stomach Descending"
Yun HUANG ; Wenyu ZHU ; Wei SONG ; Xiaobo ZHANG ; Xin ZHOU ; Lele YANG ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):244-252
Lipid turbidity disease is a metabolic disease featuring lipid metabolism disorders caused by many factors such as social environment, diet, and lifestyle, which is closely related to many diseases in modern medicine, such as hyperlipidemia, obesity, fatty liver, atherosclerosis, metabolic syndrome, and cardiovascular and cerebrovascular diseases, with a wide range of influence and far-reaching harm. According to the Huangdi Neijing, lipid turbidity disease reflects the pathological change of the body's physiologic grease. Grease is the thick part of body fluids, which has the function of nourishing, and it is the initial state and source of important substances in the human body such as brain, marrow, essence, and blood. Once the grease of the human body is abnormal, it can lead to lipid turbidity disease. The Huangdi Neijing also points out the physiological relationship between the transportation and transformation of body fluids and the rise and fall of the spleen and stomach, which can deduce the pathological relationship between the occurrence of lipid turbidity disease and the abnormal rise and fall of the spleen and stomach functions. Lipid turbidity disease is caused by overconsumption of fatty and sweet foods or insufficient spleen and stomach endowments, leading to disorders of the function of promoting clear and reducing turbidity in the spleen and stomach. This leads to the transformation of thick grease in body fluids into lipid turbidity, which accumulates in the body's meridians, blood vessels, skin pores, and organs, forming various forms of metabolic diseases. The research team believed that the pathological basis of lipid turbidity disease was the abnormal rise and fall of the spleen and stomach and the obstruction of the transfer of grease. According to the different locations where lipid turbidity stays, it was divided into four common pathogenesis types: ''inability to distinguish between the clear and turbid, turbid stagnation in the Ying blood'', ''spleen not rising clear, turbid accumulation in the vessels'', ''spleen dysfunction, lipid retention in the pores'', ''spleen failure to transportation and transformation, and grease accumulation in the liver''. According to the pathogenesis, it could be divided into four common syndromes, namely, turbid stagnation in the Ying blood, turbid accumulation in the vessels, lipid retention in the pores, and grease accumulation in the liver, and the corresponding prescriptions were given for syndrome differentiation and treatment, so as to guide clinical differentiation and treatment of the lipid turbidity disease.

Result Analysis
Print
Save
E-mail