1.Impact factors and reference range upper limit of thyroid volume in children aged 8-10 years old in Huangpu District, Shanghai
Weihua CHEN ; Chengdi SHAN ; Lili SONG ; Lifang MA ; Yun CAO ; Youshun QIAN ; Aina HE ; Jun XIAO
Journal of Environmental and Occupational Medicine 2025;42(2):205-210
Background As one of the key populations in the prevention and treatment of iodine deficiency disorders, it is important to continuously monitor the iodine nutritional level of school-age children. The current reference interval for thyroid volume in China is based on age only, without taking into account differences in individual developmental levels, and the distribution of thyroid volume may vary regionally due to economic, demographic, and environmental factors. The current reference cut-off points for thyroid volume proposed by the World Health Organization are not based on the Chinese population. Objective To understand the iodine nutritional status and distribution of thyroid volume (Tvol) among children aged 8-10 years in Huangpu District, Shanghai, China, to identify impact factors of Tvol, and to propose a reference range upper limit for local thyroid health surveillance, so as to provide a basis for goiter control and prevention. Methods Six hundred children aged 8-10 years in Huangpu District were recruited in 2017, 2020, and 2023, and body height, weight, thyroid volume, urinary iodine, and iodine content of household edible salt were determined. A multilevel model was constructed using population density and area as regional variables, and age, body surface area (BSA), and body mass index (BMI) as potential impact factors for at the individual level, to assess their effects on thyroid volume. Quantile regression of thyroid volume was performed, and the 98th percentile (P98) of thyroid volume was predicted based on age and BSA. Results The iodized salt coverage in the households of surveyed children in 2017, 2020, and 2023 was 72.0%, 57.0%, and 48.0%, respectively, and the iodized salt coverage decreased by year (χ2=24.31, P<0.001). The urinary iodine level of children in 2017 was higher than that in 2020 and 2023 (χ2=18.77, P<0.001). The Tvol medians of children in 2017, 2020, and 2023 were 2.29, 2.49, and 2.97 mL, respectively, and the Tvol increased by year (χ2=60.04, P<0.001). The proportion of goiter was higher in children in 2023 than in 2017 and 2020 (χ2=6.57, P<0.05). Sex differences were not statistically significant for urinary iodine levels, thyroid volume, and goiter. The median Tvol was 2.26, 2.58, and 2.76 mL in children of 8, 9, and 10 years old respectively, and the Tvol increased with age (χ2=49.02, P <0.001). Tvol was positively correlated with age, BSA, and BMI with correlation coefficients of
2.Accuracy and feasibility of non-invasive cell-free fetal DNA RhE blood group genotyping
Jinhua YANG ; Daoju REN ; Xiaowei LI ; Jun XIAO ; Jiangzhou YOU ; Chunyue CHEN ; Xiaojuan ZHANG ; Cuiying LI
Chinese Journal of Blood Transfusion 2025;38(3):368-374
[Objective] To explore the accuracy and feasibility of non-invasive prenatal diagnosis of fetal RhE genotype using cell-free fetal DNA (cff-DNA) from maternal peripheral blood. [Methods] A total of 134 pregnant women with single fetuses and RhE-negative blood group were selected from our hospital from November 2023 to August 2024. Free DNA extraction kit was used to extract free DNA from peripheral blood of pregnant women, and the RhE blood group genotype of free DNA was detected by real-time fluorescent quantitative PCR (RT-qPCR). If the qPCR amplification signal of the sample was negative, the methylated RASSF1A gene was amplified, and the positive amplification result was used as a sign of successful extraction of cff-DNA. Serological microcolumn gel method was used to detect the phenotype of RhE blood group in neonatal peripheral blood. [Results] Among the 134 maternal peripheral blood samples, the cff-DNA detection of RhE blood group phenotypes was consistent with the RhE blood group genotyping of neonatal peripheral blood in 133 cases, including 90 cases of Rhee genotype and 43 cases of RhE genotype, with diagnostic concordance rate of 99.3%, sensitivity of 97.7%, specificity of 100%, youden index of 0.977, area under ROC curve of 0.995, the Kappa value of 0.983, positive predictive value of 100%, and negative predictive value of 98.9%. The sample of 1 case failed to be detected. After the amplification of methylated RASSFIA gene, it was confirmed that the reason for the failure was that no cff-DNA was extracted from the sample. The diagnostic concordance rates of the first, second and third trimesters were 93.8% (15/16), 100% (51/51) and 100% (67/67), respectively. Fisher's exact test method was used to calculate the P value, which was P>0.05, indicating that there was no statistical significance in the difference of diagnostic concordance rate among the three pregnancy periods, and there was no difference in the detection concordance rate of this method in different pregnancy periods. [Conclusion] The use of cff-DNA in maternal peripheral blood for the detection of fetal RhE blood group genotype is an accurate and highly feasible non-invasive prenatal diagnostic method, which is helpful for the clinical diagnosis of fetal and neonatal hemolytic disease caused by anti-E antibody.
3.PANoptosis: a New Target for Cardiovascular Diseases
Xin-Nong CHEN ; Ying-Xi YANG ; Xiao-Chen GUO ; Jun-Ping ZHANG ; Na-Wen LIU
Progress in Biochemistry and Biophysics 2025;52(5):1113-1125
The innate immune system detects cellular stressors and microbial infections, activating programmed cell death (PCD) pathways to eliminate intracellular pathogens and maintain homeostasis. Among these pathways, pyroptosis, apoptosis, and necroptosis represent the most characteristic forms of PCD. Although initially regarded as mechanistically distinct, emerging research has revealed significant crosstalk among their signaling cascades. Consequently, the concept of PANoptosis has been proposed—an inflammatory cell death pathway driven by caspases and receptor-interacting protein kinases (RIPKs), and regulated by the PANoptosome, which integrates key features of pyroptosis, apoptosis, and necroptosis. The core mechanism of PANoptosis involves the assembly and activation of the PANoptosome, a macromolecular complex composed of three structural components: sensor proteins, adaptor proteins, and effector proteins. Sensors detect upstream stimuli and transmit signals downstream, recruiting critical molecules via adaptors to form a molecular scaffold. This scaffold activates effectors, triggering intracellular signaling cascades that culminate in PANoptosis. The PANoptosome is regulated by upstream molecules such as interferon regulatory factor 1 (IRF1), transforming growth factor beta-activated kinase 1 (TAK1), and adenosine deaminase acting on RNA 1 (ADAR1), which function as molecular switches to control PANoptosis. Targeting these switches represents a promising therapeutic strategy. Furthermore, PANoptosis is influenced by organelle functions, including those of the mitochondria, endoplasmic reticulum, and lysosomes, highlighting organelle-targeted interventions as effective regulatory approaches. Cardiovascular diseases (CVDs), the leading global cause of morbidity and mortality, are profoundly impacted by PCD. Extensive crosstalk among multiple cell death pathways in CVDs suggests a complex regulatory network. As a novel cell death modality bridging pyroptosis, apoptosis, and necroptosis, PANoptosis offers fresh insights into the complexity of cell death and provides innovative strategies for CVD treatment. This review summarizes current evidence linking PANoptosis to various CVDs, including myocardial ischemia/reperfusion injury, myocardial infarction, heart failure, arrhythmogenic cardiomyopathy, sepsis-induced cardiomyopathy, cardiotoxic injury, atherosclerosis, abdominal aortic aneurysm, thoracic aortic aneurysm and dissection, and vascular toxic injury, thereby providing critical clinical insights into CVD pathophysiology. However, the current understanding of PANoptosis in CVDs remains incomplete. First, while PANoptosis in cardiomyocytes and vascular smooth muscle cells has been implicated in CVD pathogenesis, its role in other cell types—such as vascular endothelial cells and immune cells (e.g., macrophages)—warrants further investigation. Second, although pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are known to activate the PANoptosome in infectious diseases, the stimuli driving PANoptosis in CVDs remain poorly defined. Additionally, methodological challenges persist in identifying PANoptosome assembly in CVDs and in establishing reliable PANoptosis models. Beyond the diseases discussed, PANoptosis may also play a role in viral myocarditis and diabetic cardiomyopathy, necessitating further exploration. In conclusion, elucidating the role of PANoptosis in CVDs opens new avenues for drug development. Targeting this pathway could yield transformative therapies, addressing unmet clinical needs in cardiovascular medicine.
4.Application of blood conservation measures with different red blood cell transfusion volumes in obstetrics and their impact on postpartum outcomes
Huimin DENG ; Fengcheng XU ; Meiting LI ; Lan HU ; Xiao WANG ; Shiyu WANG ; Xiaofei YUAN ; Jun ZHENG ; Zehua DONG ; Yuanshan LU ; Shaoheng CHEN
Chinese Journal of Blood Transfusion 2025;38(5):691-698
Objective: To evaluate the application of blood conservation measures in obstetric patients with different red blood cell transfusion volumes and to assess the impact of different transfusion volumes on postpartum outcomes. Methods: A retrospective investigation was conducted on 448 obstetric patients who received blood transfusions at the Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine from January 2016 to December 2022. Patients were divided into four groups (1-2 units group, 3-4 units group, 5-6 units group, and >6 units group) based on the volumes of red blood cells (RBCs) transfused during and within 7 days after delivery. The maternal physiological indicators, pre- and postpartum laboratory test indicators, obstetric complications, application of blood conservation measures, use of blood products, and postpartum outcomes were reviewed. The clinical characteristics, application of blood conservation measures, and their impact on postpartum outcomes were compared among different transfusion groups. Results: There were statistically significant differences in the multivariate logistic analysis of history of previous cesarean section (OR=1.781), eclampsia/pre-eclampsia/(OR=1.972) and postpartum blood loss>1 000 mL(OR=1.699)(P<0.05) among different transfusion groups. In terms of blood conservation measures, the more RBCs transfused, the higher the rate of mothers receiving blood conservation measures such as balloon occlusion, arterial ligation, autologous blood transfusion with a cell saver, and hysterectomy. With the increase in the volume of RBCs transfusion, the demand for fresh frozen plasma(FFP), cryoprecipitate, and platelet transfusions also increased. The hospitalization days for the four groups of parturients were 6.0 (4.0-9.0), 7.5 (5.0-14.8), 7.0 (4.5-13.0) and 11.0 (9.0-20.5), respectively (P<0.05) and the rates of ICU transfer were 2.0% (5/250), 9.4% (12/128),18.2% (6/33) and 51.4% (19/37), respectively (P<0.05). Both increased significantly with the increase in the volume of RBCs transfusion, and the differences between groups were statistically significant. Conclusion: Parturients who received higher volume of RBCs had multiple risks factors for bleeding before childbirth, had higher postpartum blood loss, and had a higher rate of application of various blood conservation measures. In addition, an increase in the volume of RBCs transfusion may have adverse effects on postpartum recovery.
5.Exploration and Practice of Artificial Intelligence Empowering Case-based Teaching in Biochemistry and Molecular Biology
Ying-Lu HU ; Yi-Chen LIN ; Jun-Ming GUO ; Xiao-Dan MENG
Progress in Biochemistry and Biophysics 2025;52(8):2173-2184
In recent years, the deep integration of artificial intelligence (AI) into medical education has created new opportunities for teaching Biochemistry and Molecular Biology, while also offering innovative solutions to the pedagogical challenges associated with protein structure and function. Focusing on the case of anaplastic lymphoma kinase (ALK) gene mutations in non-small-cell lung cancer (NSCLC), this study integrates AI into case-based learning (CBL) to develop an AI-CBL hybrid teaching model. This model features an intelligent case-generation system that dynamically constructs ALK mutation scenarios using real-world clinical data, closely linking molecular biology concepts with clinical applications. It incorporates AI-powered protein structure prediction tools to accurately visualize the three-dimensional structures of both wild-type and mutant ALK proteins, dynamically simulating functional abnormalities resulting from conformational changes. Additionally, a virtual simulation platform replicates the ALK gene detection workflow, bridging theoretical knowledge with practical skills. As a result, a multidimensional teaching system is established—driven by clinical cases and integrating molecular structural analysis with experimental validation. Teaching outcomes indicate that the three-dimensional visualization, dynamic interactivity, and intelligent analytical capabilities provided by AI significantly enhance students’ understanding of molecular mechanisms, classroom engagement, and capacity for innovative research. This model establishes a coherent training pathway linking “fundamental theory-scientific research thinking-clinical practice”, offering an effective approach to addressing teaching challenges and advancing the intelligent transformation of medical education.
6.Assessment of genetic associations between antidepressant drug targets and various stroke subtypes: A Mendelian randomization approach.
Luyang ZHANG ; Yunhui CHU ; Man CHEN ; Yue TANG ; Xiaowei PANG ; Luoqi ZHOU ; Sheng YANG ; Minghao DONG ; Jun XIAO ; Ke SHANG ; Gang DENG ; Wei WANG ; Chuan QIN ; Daishi TIAN
Chinese Medical Journal 2025;138(4):487-489
7.Diagnosis and treatment of colorectal liver metastases: Chinese expert consensus-based multidisciplinary team (2024 edition).
Wen ZHANG ; Xinyu BI ; Yongkun SUN ; Yuan TANG ; Haizhen LU ; Jun JIANG ; Haitao ZHOU ; Yue HAN ; Min YANG ; Xiao CHEN ; Zhen HUANG ; Weihua LI ; Zhiyu LI ; Yufei LU ; Kun WANG ; Xiaobo YANG ; Jianguo ZHOU ; Wenyu ZHANG ; Muxing LI ; Yefan ZHANG ; Jianjun ZHAO ; Aiping ZHOU ; Jianqiang CAI
Chinese Medical Journal 2025;138(15):1765-1768
8.A phenome-wide spectrum of morbidity and mortality risks related to the number of offspring among 0.5 million Chinese men and women: A prospective cohort study.
Meng XIAO ; Aolin LI ; Canqing YU ; Yuanjie PANG ; Pei PEI ; Ling YANG ; Yiping CHEN ; Huaidong DU ; Yujie HUA ; Junshi CHEN ; Zhengming CHEN ; Jun LYU ; Liming LI ; Dianjianyi SUN
Chinese Medical Journal 2025;138(22):2925-2937
BACKGROUND:
Prospective evidence on how offspring number influences morbidity and mortality remains limited. This study investigated the associations between number of offspring and morbidity and mortality risks among 0.5 million Chinese adults.
METHODS:
By using data from the China Kadoorie Biobank (CKB; n = 512,723, an approximately 12-year follow-up), sex-stratified phenome-wide association study (PheWAS) analyses were conducted to investigate associations between offspring number (without vs . with offspring; more than one vs . one offspring) and risks of ICD10-coded morbidity and mortality. Sex-specific adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) were estimated by Cox proportional-hazards models.
RESULTS:
Among 210,129 men and 302,284 women aged 30-79 years, 1,338,837 incident events were recorded. PheWAS results revealed that offspring number was associated with disease risks across multiple systems. Cox models showed that childless men ( vs . one offspring) had higher risks for nine of 36 diseases, while childless women for five of 37. Each additional offspring was associated with reduced risks of mental and behavioral disorders in men (aHR [95% CI] = 0.93 [0.87-0.98]) and both mental and behavioral disorders (aHR [95% CI] = 0.93 [0.89-0.97]) and breast cancer (aHR [95% CI] = 0.82 [0.78-0.86]) in women. However, each additional offspring was associated with a 4% increase in the risk of cholelithiasis and cholecystitis in women (aHR [95% CI] = 1.04 [1.02-1.07]). Among 282,630 patients, 44,533 deaths were documented. Childless patients had higher mortality risk in both men (aHR [95% CI] = 1.37 [1.28-1.47]) and women (aHR [95% CI] = 1.27 [1.15-1.41]). For men, each additional offspring reduced mortality by 4% (aHR [95% CI] = 0.96 [0.95-0.98]), while for women, the lowest risk was observed among those with three to four offspring ( Pnonlinear <0.0001).
CONCLUSIONS
Offspring number is closely linked to morbidity and mortality risks. Further research is warranted to verify our findings and clarify the underlying mechanisms involved.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
China/epidemiology*
;
Morbidity
;
Proportional Hazards Models
;
Prospective Studies
;
Risk Factors
;
Family Characteristics
;
Mortality
;
East Asian People
9.The regulation and mechanism of apolipoprotein A5 on myocardial lipid deposition.
Xiao-Jie YANG ; Jiang LI ; Jing-Yuan CHEN ; Teng-Teng ZHU ; Yu-Si CHEN ; Hai-Hua QIU ; Wen-Jie CHEN ; Xiao-Qin LUO ; Jun LUO
Acta Physiologica Sinica 2025;77(1):35-46
The current study aimed to clarify the roles of apolipoprotein A5 (ApoA5) and milk fat globule-epidermal growth factor 8 (Mfge8) in regulating myocardial lipid deposition and the regulatory relationship between them. The serum levels of ApoA5 and Mfge8 in obese and healthy people were compared, and the obesity mouse model induced by the high-fat diet (HFD) was established. In addition, primary cardiomyocytes were purified and identified from the hearts of suckling mice. The 0.8 mmol/L sodium palmitate treatment was used to establish the lipid deposition cardiomyocyte model in vitro. ApoA5-overexpressing adenovirus was used to observe its effects on cardiac function and lipids. The expressions of the fatty acid uptake-related molecules and Mfge8 on transcription or translation levels were detected. Co-immunoprecipitation was used to verify the interaction between ApoA5 and Mfge8 proteins. Immunofluorescence was used to observe the co-localization of Mfge8 protein with ApoA5 or lysosome-associated membrane protein 2 (LAMP2). Recombinant rMfge8 was added to cardiomyocytes to investigate the regulatory mechanism of ApoA5 on Mfge8. The results showed that participants in the simple obesity group had a significant decrease in serum ApoA5 levels (P < 0.05) and a significant increase in Mfge8 levels (P < 0.05) in comparison with the healthy control group. The adenovirus treatment successfully overexpressed ApoA5 in HFD-fed obese mice and palmitic acid-induced lipid deposition cardiomyocytes, respectively. ApoA5 reduced the weight of HFD-fed obese mice (P < 0.05), shortened left ventricular isovolumic relaxation time (IVRT), increased left ventricular ejection fraction (LVEF), and significantly reduced plasma levels of triglycerides (TG) and cholesterol (CHOL) (P < 0.05). In myocardial tissue and cardiomyocytes, the overexpression of ApoA5 significantly reduced the deposition of TG (P < 0.05), transcription of fatty acid translocase (FAT/CD36) (P < 0.05), fatty acid-binding protein (FABP) (P < 0.05), and fatty acid transport protein (FATP) (P < 0.05), and protein expression of Mfge8 (P < 0.05), while the transcription levels of Mfge8 were not significantly altered (P > 0.05). In vitro, the Mfge8 protein was captured using ApoA5 as bait protein, indicating a direct interaction between them. Overexpression of ApoA5 led to an increase in co-localization of Mfge8 with ApoA5 or LAMP2 in cardiomyocytes under lipid deposition status. On this basis, exogenous added recombinant rMfge8 counteracted the improvement of lipid deposition in cardiomyocytes by ApoA5. The above results indicate that the overexpression of ApoA5 can reduce fatty acid uptake in myocardial cells under lipid deposition status by regulating the content and cellular localization of Mfge8 protein, thereby significantly reducing myocardial lipid deposition and improving cardiac diastolic and systolic function.
Animals
;
Humans
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Obesity/physiopathology*
;
Male
;
Apolipoprotein A-V/blood*
;
Lipid Metabolism/physiology*
;
Milk Proteins/blood*
;
Myocardium/metabolism*
;
Diet, High-Fat
;
Antigens, Surface/physiology*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Female
10.Progress on the mechanism and application of hyperbaric oxygen therapy for neurodegenerative diseases.
Fang-Fang WANG ; Nan WANG ; Heng-Rong YUAN ; Ji XU ; Jun MA ; Xiao-Chen BAO ; Yi-Qun FANG
Acta Physiologica Sinica 2025;77(2):318-326
In 2040, neurodegenerative diseases (NDD) will overtake cancer as the second leading cause of death after cardiovascular and cerebrovascular diseases. Therefore, the search for effective intervention measures has become the top priority to deal with this difficult burden. Hyperbaric oxygen therapy (HBOT) has been used for the past 50 years to treat conditions such as decompression sickness, carbon monoxide poisoning and radiation damage. In recent years, studies have confirmed that HBOT has good effects in improving cognitive impairment after brain injury and stroke, and alleviating neurodegeneration and dysfunction related to NDD. Here we reviewed the pathogenesis and treatment state of NDD, introduced the application of HBOT in animal models and clinical studies of NDD, and expounded the application potential of HBOT in the treatment of NDD from the perspective of mitochondrial function, neuroinflammation, neurogenesis and angiogenesis, oxidative stress, apoptosis, microcirculation and epigenetics.
Hyperbaric Oxygenation
;
Humans
;
Neurodegenerative Diseases/physiopathology*
;
Animals
;
Oxidative Stress
;
Apoptosis
;
Mitochondria/physiology*
;
Neurogenesis
;
Epigenesis, Genetic

Result Analysis
Print
Save
E-mail