1.Differences in chemical components and quality analysis of Gardenia jasminoides before and after processing with ginger
Lihua TANG ; Yu WU ; Xuedi HUANG ; Xiaolian HU ; Yi TANG ; Zilong CHEN ; Xiaofan XIAO ; Xide YE
China Pharmacy 2026;37(2):168-173
OBJECTIVE To analyze the differences in chemical components of Gardenia jasminoides before and after processing with ginger, and to evaluate the quality differences among different producing areas. METHODS Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry was used to analyze the compositional differences of G. jasminoides before and after processing with ginger. The water content, total ash, and ethanol-soluble extract content of ginger- processed G. jasminoides were determined according to the 2020 edition of Chinese Pharmacopoeia. High performance liquid chromatography was adopted to determine the contents of genipin gentiobioside, geniposide, crocin Ⅰ and crocin Ⅱ in ginger- processed G. jasminoides. RESULTS A total of 49 chemical components were identified from raw G. jasminoides and ginger- processed G. jasminoides, including 14 flavonoids, 15 iridoids, 10 organic acids, 2 alkaloids and 8 other compounds. Among them, 42 components were detected in raw G. jasminoides, 28 in ginger-processed G. jasminoides, and 21 components were common to both. After processing with ginger, raw G. jasminoides lost 21 components (including iridoids, flavonoids, alkaloids, and others), while 7 chemical components were added (including coumarins, organic acids, organic acid esters, and flavonoids). For the 15 batches of ginger-processed G. jasminoides, the water content ranged from 5.64% to 7.11%, total ash from 2.92% to 4.87%, and ethanol-soluble extract from 40.61% to 58.02%. The average contents of genipin gentiobioside, geniposide, crocin Ⅰ and crocin Ⅱ were 0.108 7, 0.542 2, 0.565 0, and 0.012 5 mg/g, respectively. CONCLUSIONS After processing with ginger, G. jasminoides loses 21 components, while 7 new components are added. Differences are observed in the water content, total ash, ethanol-soluble extract, and the contents of genipin gentiobioside, geniposide, crocin Ⅰ, and crocin Ⅱ of ginger-processed G. jasminoides from different producing areas. Notably, samples from Fujian exhibit high contents of genipin gentiobioside and ethanol-soluble extract, while samples from Jiangxi have a high content of crocin Ⅰ.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Concept, design and clinical application of minimally invasive liver transplantation through laparoscopic combined upper midline incision
Shuhong YI ; Hui TANG ; Kaining ZENG ; Xiao FENG ; Binsheng FU ; Qing YANG ; Jia YAO ; Yang YANG ; Guihua CHEN
Organ Transplantation 2025;16(1):67-73
Objective To explore the technical process and clinical application of laparoscopic combined upper midline incision minimally invasive liver transplantation. Methods A retrospective analysis was conducted on 30 cases of laparoscopic combined upper midline incision minimally invasive liver transplantation. The cases were divided into cirrhosis group (15 cases) and liver failure group (15 cases) based on the primary disease. The surgical and postoperative conditions of the two groups were compared. Results All patients successfully underwent laparoscopic "clockwise" liver resection, with no cases of passive conversion to open surgery or intolerance to pneumoperitoneum. In 6 cases, the right lobe was relatively large, and the right hepatic ligaments could not be completely mobilized. One case required an additional reverse "L" incision during open surgery. All patients successfully completed the liver transplantation, with no major intraoperative bleeding, cardiovascular events, or other occurrences in the 30 patients. The model for end-stage liver disease (MELD) score in the cirrhosis group was lower than that in the liver failure group (P<0.001). There were no statistically significant differences between the two groups in terms of age, surgical time, blood loss, anhepatic phase, or cold ischemia time (all P>0.05). During the perioperative period, there was 1 case of hepatic artery embolism, 1 case of portal vein anastomotic stenosis, no complications of hepatic vein and inferior vena cava, and 3 cases of biliary anastomotic stenosis, all of which occurred in the liver failure group. Conclusions In strictly selected cases, the minimally invasive liver transplantation technique combining laparoscopic hepatectomy with upper midline incision for graft implantation has the advantages of smaller incisions, less bleeding, relatively easier operation, and faster postoperative recovery, which is worthy of clinical promotion and application.
4.Mechanism of Modified Si Junzitang and Shashen Maidong Tang in Improving Sensitivity of Cisplatin in EGFR-TKI Resistant Lung Adenocarcinoma Cells Based on Aerobic Glycolysis
Yanping WEN ; Yi JIANG ; Liping SHEN ; Haiwei XIAO ; Xiaofeng YANG ; Surui YUAN ; Lingshuang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):39-46
ObjectiveTo investigate the mechanism of modified Si Junzitang and Shashen Maidong Tang [Yiqi Yangyin Jiedu prescription (YQYYJD)] in enhancing the sensitivity of cisplatin in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI)-resistant lung adenocarcinoma cells based on aerobic glycolysis. MethodsThe effects of different concentrations of YQYYJD (0, 2, 3, 4, 5, 6, 7, 8 g·L-1) and cisplatin (0, 3, 6, 9, 12, 15, 18, 21, 24, 27 mg·L-1) on the proliferation and activity of PC9/GR cells were detected by the cell counting kit-8 (CCK-8) assay after 24 hours of intervention. The half-maximal inhibitory concentration (IC50) for PC9/GR cells was calculated to determine the concentrations used in subsequent experiments. PC9/GR cells were divided into blank group (complete medium), YQYYJD group (5 g·L-1), cisplatin group (12 mg·L-1), and combined group (YQYYJD 5 g·L-1 + cisplatin 12 mg·L-1). After 24 hours of intervention, cell viability was measured using CCK-8 assay. Cell proliferation was assessed by colony formation assay, and cell migration was evaluated by scratch and Transwell assays. Glucose consumption, lactate production, and adenosine triphosphate (ATP) levels were measured by colorimetric assays. The expression levels of glycolysis-related proteins, including hexokinase 2 (HK2), phosphofructokinase P (PFKP), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), glucose transporter 1 (GLUT1), and monocarboxylate transporter 4 (MCT4), were determined by Western blot. ResultsBoth YQYYJD and cisplatin inhibited the viability of PC9/GR cells in a concentration-dependent manner. The IC50 of PC9/GR cells for YQYYJD and cisplatin were 5.15 g·L-1 and 12.91 mg·L-1, respectively. In terms of cell proliferation, compared with the blank group, the cell survival rate and the number of colonies formed in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in cell survival rate and colony formation (P<0.01). In terms of cell migration, compared with the blank group, the cell migration rate and the number of cells passing through the Transwell membrane in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group exhibited a further significant reduction in cell migration rate and the number of cells passing through the Transwell membrane (P<0.01). In terms of glycolysis, compared with the blank group, glucose consumption, lactate production, and ATP levels in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in glucose consumption, lactate production, and ATP levels (P<0.05). Compared with the blank group, the protein expression levels of HK2, PFKP, PKM2, and LDHA in the YQYYJD, cisplatin, and combined groups were significantly decreased (P<0.01). The combined group showed a further significant reduction in the expression levels of these proteins compared with the YQYYJD and cisplatin groups (P<0.01). No significant differences were observed in the protein expression levels of GLUT1 and MCT4 among the groups. ConclusionYQYYJD can synergistically inhibit the proliferation and migration of PC9/GR cells and enhance their sensitivity to cisplatin. The mechanism may be related to the downregulation of the expression of glycolysis-related rate-limiting enzymes, including HK2, PFKP, PKM2, and LDHA, thereby inhibiting glycolysis.
5.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.Application of middle hepatic vein splitting and reconstruction technique in split liver transplantation from low-age donor livers
Hui TANG ; Binsheng FU ; Qing YANG ; Jia YAO ; Kaining ZENG ; Xiao FENG ; Shuhong YI ; Yang YANG
Organ Transplantation 2025;16(3):453-459
Objective To explore the feasibility and clinical experience of the middle hepatic vein splitting-reconstruction technique in split liver transplantation from low-age donor livers. Methods A retrospective analysis was conducted on the cases of two low-age donor livers that underwent middle hepatic vein splitting-reconstruction, which were transplanted into four child recipients at the Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University from January 2017 to July 2023. The surgical and postoperative conditions were summarized and analyzed. Results Donor 1 was a 6-year-old and 4-month-old girl with a body weight of 21 kg, and the obtained donor liver weighed 496 g. After splitting, the left and right liver weights were 201 g and 280 g, and transplanted into a 9-month-old boy weighing 6.5 kg and a 9-month-old boy weighing 7.5 kg, respectively. The graft to recipient weight ratio (GRWR) was 3.09% and 3.73%, respectively. Donor 2 was a 5-year-old and 8-month-old boy with a body weight of 19 kg, and the donor liver weighed 673 g. After splitting, the left and right liver weights were 230 g and 400 g, and transplanted into a 13-month-old girl weighing 9.5 kg and a 15-month-old boy weighing 12 kg. The GRWR was 2.42% and 3.33%, respectively. Both donor livers were split ex vivo, with the middle hepatic vein being completely split in the middle and reconstructed using allogeneic iliac vein and iliac artery vascular patches. According to GRWR, none of the 4 transplant livers were reduced in volume. Among the 4 recipients, one died due to postoperative portal vein thrombosis and non-function of the transplant liver, while the other three cases recovered smoothly without early or late complications. Regular follow-up was conducted until July 31, 2023, and liver function recovered well. Conclusions Under the premise of detailed assessment of the donor liver and meticulous intraoperative operation, as well as matching with suitable child recipients, low-age donor livers may be selected for splitting. The complete splitting and reconstruction of the middle hepatic vein in the middle may effectively ensure the adequate venous return of the left and right liver and provide sufficient functional liver volume.
8.Role of Peripheral 5-hydroxytryptamine in Toll-like Receptor 4-mediated Diabetes Mellitus Type 2
Yi-Ying ZHANG ; Ping ZHANG ; Bo YANG ; Xiao-Tong CHANG
Progress in Biochemistry and Biophysics 2025;52(5):1070-1080
In recent years, the prevalence of diabetes has continued to rise, with diabetes mellitus type 2 (T2DM) being the most common form. T2DM is characterized by chronic low-grade inflammation and disruptions in insulin metabolism. Toll-like receptor 4 (TLR4) is a key pattern recognition receptor that, upon activation, upregulates pro-inflammatory cytokines via the nuclear factor κB (NF‑κB) pathway, thereby contributing to the pathogenesis of T2DM. Peripheral 5-hydroxytryptamine (5-HT), primarily synthesized by enterochromaffin (EC) cells in the gut, interacts with 5-hydroxytryptamine receptors (5-HTRs) in key insulin-target tissues, including the liver, adipose tissue, and skeletal muscle. This interaction influences hepatic gluconeogenesis, fat mobilization, and the browning of white adipose tissue. Elevated peripheral 5-HT levels may disrupt glucose and lipid metabolism, thereby contributing to the onset and progression of T2DM. Within mitochondria, 5-HT undergoes degradation and inactivation through the enzymatic action of monoamine oxidase A (MAO-A), leading to the generation of reactive oxygen species (ROS). Excessive ROS production and accumulation can induce oxidative stress, which may further contribute to the pathogenesis of T2DM. Platelets serve as the primary reservoir for5-HT in the bloodstream. The activation of the TLR4 signaling pathway on the platelet surface, coupled with reduced expression of the 5-HT transporter on the cell membrane, leads to elevated serum 5-HT levels, potentially accelerating the progression of T2DM. Therefore, inhibition of TLR4 and reduction of peripheral 5-HT levels could represent promising therapeutic strategies for T2DM. This review explores the synthesis, transport, and metabolism of peripheral 5-HT, as well as its role in TLR4-mediated T2DM, with the aim of providing novel insights into the clinical diagnosis, treatment, and evaluation of T2DM.
9.The Mechanism of Blue Light in Inactivating Microorganisms and Its Applications in The Food and Medical Fields
Ruo-Hong BI ; Rong-Qian WU ; Yi LÜ ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2025;52(5):1219-1228
Blue light inactivation technology, particularly at the 405 nm wavelength, has demonstrated distinct and multifaceted mechanisms of action against both Gram-positive and Gram-negative bacteria, offering a promising alternative to conventional antibiotic therapies. For Gram-positive pathogens such as Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus (MRSA), the bactericidal effects are primarily mediated by endogenous porphyrins (e.g., protoporphyrin III, coproporphyrin III, and uroporphyrin III), which exhibit strong absorption peaks between 400-430 nm. Upon irradiation, these porphyrins are photoexcited to generate cytotoxic reactive oxygen species (ROS), including singlet oxygen, hydroxyl radicals, and superoxide anions, which collectively induce oxidative damage to cellular components. Early studies by Endarko et al. revealed that (405±5) nm blue light at 185 J/cm² effectively inactivated L. monocytogenes without exogenous photosensitizers, supporting the hypothesis of intrinsic photosensitizer involvement. Subsequent work by Masson-Meyers et al. demonstrated that 405 nm light at 121 J/cm² suppressed MRSA growth by activating endogenous porphyrins, leading to ROS accumulation. Kim et al. further elucidated that ROS generated under 405 nm irradiation directly interact with unsaturated fatty acids in bacterial membranes, initiating lipid peroxidation. This process disrupts membrane fluidity, compromises structural integrity, and impairs membrane-bound proteins, ultimately causing cell death. In contrast, Gram-negative bacteria such as Salmonella, Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa, and Acinetobacter baumannii exhibit more complex inactivation pathways. While endogenous porphyrins remain central to ROS generation, studies reveal additional photodynamic contributors, including flavins (e.g., riboflavin) and bacterial pigments. For instance, H. pylori naturally accumulates protoporphyrin and coproporphyrin mixtures, enabling efficient 405 nm light-mediated inactivation without antibiotic resistance concerns. Kim et al. demonstrated that 405 nm light at 288 J/cm² inactivates Salmonella by inducing genomic DNA oxidation (e.g., 8-hydroxy-deoxyguanosine formation) and disrupting membrane functions, particularly efflux pumps and glucose uptake systems. Huang et al. highlighted the enhanced efficacy of pulsed 405 nm light over continuous irradiation for E. coli, attributing this to increased membrane damage and optimized ROS generation through frequency-dependent photodynamic effects. Environmental factors such as temperature, pH, and osmotic stress further modulate susceptibility, sublethal stress conditions (e.g., high salinity or acidic environments) weaken bacterial membranes, rendering cells more vulnerable to subsequent ROS-mediated damage. The 405 nm blue light inactivates drug-resistant Pseudomonas aeruginosa through endogenous porphyrins, pyocyanin, and pyoverdine, with the inactivation efficacy influenced by bacterial growth phase and culture medium composition. Intriguingly, repeated 405 nm exposure (20 cycles) failed to induce resistance in A. baumannii, with transient tolerance linked to transient overexpression of antioxidant enzymes (e.g., superoxide dismutase) or stress-response genes (e.g., oxyR). For Gram-positive bacteria, porphyrin abundance dictates sensitivity, whereas in Gram-negative species, membrane architecture and accessory pigments modulate outcomes. Critically, ROS-mediated damage is nonspecific, targeting DNA, proteins, and lipids simultaneously, thereby minimizing resistance evolution. The 405 nm blue light technology, as a non-chemical sterilization method, shows promise in medical and food industries. It enhances infection control through photodynamic therapy and disinfection, synergizing with red light for anti-inflammatory treatments (e.g., acne). In food processing, it effectively inactivates pathogens (e.g., E. coli, S. aureus) without altering food quality. Despite efficacy against multidrug-resistant A. baumannii, challenges include device standardization, limited penetration in complex materials, and optimization of photosensitizers/light parameters. Interdisciplinary research is needed to address these limitations and scale applications in healthcare, food safety, and environmental decontamination.
10.Hepatocyte Nuclear Factor 4α Transcriptionally Activates TM4SF5 Through The DR1 Motif
Yi-Ming GUO ; Xiao-Fei ZHANG ; Han FENG ; Li ZHENG
Progress in Biochemistry and Biophysics 2025;52(5):1241-1251
ObjectiveHepatocyte nuclear factor 4-alpha (HNF4A) is a critical transcription factor in the liver and pancreas. Dysfunctions of HNF4A lead to maturity onset diabetes of the young 1 (MODY1). Notably, MODY1 patients with HNF4A pathogenic mutations exhibit decreased responses to arginine and reduced plasma triglyceride levels, but the mechanisms remain unclear. This study aims to investigate the potential target genes transcriptionally regulated by HNF4A and explore its role in these metabolic pathways. MethodsA stable 293T cell line expressing the HNF1A reporter was overexpressed with HNF4A. RNA sequencing (RNA-seq) was performed to analyze transcriptional differences. Transcription factor binding site prediction was then conducted to identify HNF4A binding motifs in the promoter regions of relevant target genes. ResultsRNA-seq results revealed a significant upregulation of transmembrane 4 L six family member 5 (TM4SF5) mRNA in HNF4A-overexpressing cells. Transcription factor binding predictions suggested the presence of five potential HNF4A binding motifs in the TM4SF5 promoter. Finally, we confirmed that the DR1 site in the -57 to -48 region of the TM4SF5 promoter is the key binding motif for HNF4A. ConclusionThis study identified TM4SF5 as a target gene of HNF4A and determined the key binding motif involved in its regulation. Given the role of TM4SF5 as an arginine sensor in mTOR signaling activation and triglyceride secretion, which closely aligns with phenotypes observed in MODY1 patients, our findings provide novel insights into the possible mechanisms by which HNF4A regulates triglyceride secretion in the liver and arginine-stimulated insulin secretion in the pancreas.

Result Analysis
Print
Save
E-mail