1.Astragali Radix-Curcumae Rhizoma combination inhibits proliferation, migration, and invasion of colon cancer HT-29 cells by regulating EMT.
Qi YANG ; Zheng SUN ; Yi-Miao ZHU ; Dong-Yang XIANG ; Qun-Yao ZHANG ; Fang WANG ; Gang YANG ; Hao YANG ; De-Cai TANG ; Xiao-Yu WU
China Journal of Chinese Materia Medica 2023;48(3):736-743
This study aims to investigate the effect of Astragali Radix-Curcumae Rhizoma(AC) combination on the proliferation, migration, and invasion of colon cancer HT-29 cells based on epithelial-mesenchymal transition(EMT). HT-29 cells were respectively treated with 0, 3, 6 and 12 g·kg~(-1) AC-containing serum for 48 h. The survival and growth of cells were measured by thiazole blue(MTT) colorimetry, and the proliferation, migration, and invasion of cells were detected by 5-ethynyl-2'-deoxyuridine(EdU) test and Transwell assay. Cell apoptosis was examined by flow cytometry. The BALB/c nude mouse model of subcutaneous colon cancer xenograft was established, and then model mice were classified into blank control group, 6 g·kg~(-1) AC group, and 12 g·kg~(-1) AC group. The tumor weight and volume of mice were recorded, and the histopathological morphology of the tumor was observed based on hematoxylin-eosin(HE) staining. The expression of apoptosis-associated proteins B-cell lymphoma-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), and cleaved caspase-3, and EMT-associated proteins E-cadherin, MMP9, MMP2 and vimentin in HT-29 cells and mouse tumor tissues after the treatment of AC was determined by Western blot. The results showed that cell survival rate and the number of cells at proliferation stage decreased compared with those in the blank control group. The number of migrating and invading cells reduced and the number of apoptotic cells increased in the administration groups compared with those in the blank control group. As for the in vivo experiment, compared with the blank control group, the administration groups had small tumors with low mass and shrinkage of cells and karyopycnosis in the tumor tissue, indicating that the AC combination may improve EMT. In addition, the expression of Bcl2 and E-cadherin increased and the expression of Bax, caspase-3, cleaved caspase-3, MMP9, MMP2, and vimentin decreased in HT-29 cells and tumor tissues in each administration group. In summary, the AC combination can significantly inhibit the proliferation, invasion, migration, and EMT of HT-29 cells in vivo and in vitro and promote the apoptosis of colon cancer cells.
Humans
;
Animals
;
Mice
;
Caspase 3
;
Matrix Metalloproteinase 2
;
Matrix Metalloproteinase 9
;
Vimentin
;
HT29 Cells
;
bcl-2-Associated X Protein
;
Colonic Neoplasms
;
Cell Proliferation
2.A prospective study on application of human umbilical cord mesenchymal stem cells combined with autologous Meek microskin transplantation in patients with extensive burns.
Tian Tian YAN ; Rong XIAO ; Ying WANG ; Guo An LIN ; Yin ZHENG ; Hui ZHAO ; Wen Jun LI ; Xin Zhi SHANG ; Jin Song MENG ; Dong Sheng HU ; Song LI ; Chao WANG ; Zhi Chen LIN ; Hong Chang CHEN ; Dong Yan ZHAO ; Di TANG
Chinese Journal of Burns 2023;39(2):114-121
Objective: To investigate the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) combined with autologous Meek microskin transplantation on patients with extensive burns. Methods: The prospective self-controlled study was conducted. From May 2019 to June 2022, 16 patients with extensive burns admitted to the 990th Hospital of PLA Joint Logistics Support Force met the inclusion criteria, while 3 patients were excluded according to the exclusion criteria, and 13 patients were finally selected, including 10 males and 3 females, aged 24-61 (42±13) years. A total of 20 trial areas (40 wounds, with area of 10 cm×10 cm in each wound) were selected. Two adjacent wounds in each trial area were divided into hUCMSC+gel group applied with hyaluronic acid gel containing hUCMSCs and gel only group applied with hyaluronic acid gel only according to the random number table, with 20 wounds in each group. Afterwards the wounds in two groups were transplanted with autologous Meek microskin grafts with an extension ratio of 1∶6. In 2, 3, and 4 weeks post operation, the wound healing was observed, the wound healing rate was calculated, and the wound healing time was recorded. The specimen of wound secretion was collected for microorganism culture if there was purulent secretion on the wound post operation. In 3, 6, and 12 months post operation, the scar hyperplasia in wound was assessed using the Vancouver scar scale (VSS). In 3 months post operation, the wound tissue was collected for hematoxylin-eosin (HE) staining to observe the morphological changes and for immunohistochemical staining to observe the positive expressions of Ki67 and vimentin and to count the number of positive cells. Data were statistically analyzed with paired samples t test and Bonferronni correction. Results: In 2, 3, and 4 weeks post operation, the wound healing rates in hUCMSC+gel group were (80±11)%, (84±12)%, and (92±9)%, respectively, which were significantly higher than (67±18)%, (74±21)%, and (84±16)% in gel only group (with t values of 4.01, 3.52, and 3.66, respectively, P<0.05). The wound healing time in hUCMSC+gel group was (31±11) d, which was significantly shorter than (36±13) d in gel only group (t=-3.68, P<0.05). The microbiological culture of the postoperative wound secretion specimens from the adjacent wounds in 2 groups was identical, with negative results in 4 trial areas and positive results in 16 trial areas. In 3, 6, and 12 months post operation, the VSS scores of wounds in gel only group were 7.8±1.9, 6.7±2.1, and 5.4±1.6, which were significantly higher than 6.8±1.8, 5.6±1.6, and 4.0±1.4 in hUCMSC+gel group, respectively (with t values of -4.79, -4.37, and -5.47, respectively, P<0.05). In 3 months post operation, HE staining showed an increase in epidermal layer thickness and epidermal crest in wound in hUCMSC+gel group compared with those in gel only group, and immunohistochemical staining showed a significant increase in the number of Ki67 positive cells in wound in hUCMSC+gel group compared with those in gel only group (t=4.39, P<0.05), with no statistically significant difference in the number of vimentin positive cells in wound between the 2 groups (P>0.05). Conclusions: The application of hyaluronic acid gel containing hUCMSCs to the wound is simple to perform and is therefore a preferable route. Topical application of hUCMSCs can promote healing of the autologous Meek microskin grafted area in patients with extensive burns, shorten wound healing time, and alleviate scar hyperplasia. The above effects may be related to the increased epidermal thickness and epidermal crest, and active cell proliferation.
Female
;
Humans
;
Male
;
Burns/surgery*
;
Cicatrix
;
Eosine Yellowish-(YS)
;
Hyaluronic Acid/therapeutic use*
;
Hyperplasia
;
Ki-67 Antigen
;
Prospective Studies
;
Umbilical Cord
;
Vimentin
;
Young Adult
;
Adult
;
Middle Aged
3.Effects of miR-9-5p on the migration, invasion and epithelial-mesenchymal transition process in cervical squamous cell carcinoma.
Ting KUANG ; Lesai LI ; Yile CHEN ; Jinjin WANG
Journal of Central South University(Medical Sciences) 2023;48(1):15-23
OBJECTIVES:
Cervical squamous cell carcinoma is the most common cancer in female reproductive system. This study aims to explore the effect of microRNA-9-5p (miR-9-5p) on the migration, invasion, and epithelial-mesenchymal transition (EMT) process of cervical squamous cells.
METHODS:
Bioinformatics were used to predict the miRNAs that could bind to E-cadherin (E-cad). The Cancer Genome Atlas (TCGA) database was used to analyze and extract significantly differentially expressed miRNAs from part of cervical squamous cell carcinoma tissues and normal cervical tissues, and miR-9-5p was selected as the main research target. The translated regions (UTR) of wild-type E-cad (E-cad-WT 3'-UTR) or the 3'-UTR of mutant E-cad (E-Cad-MUT 3'-UTR) was transfected with miR-9-5p mimic normal control (NC), and miR-9-5p mimic was co-transfected human embryonic kidney cells (293T). The relationship between miR-9-5p and E-cad was detected by double luciferase assay. The expression of miR-9-5p in normal cervical epithelial cell lines (H8) and cervical squamous cell lines (C33A, siha, caski and Me180) were detected by quantitative real-time PCR. Then, the experiments were divided into groups as follows: a block control group, an overexpression control group (mimic-NC group), a miR-95p overexpression group (mimic group), an inhibitory expression control group (inhibitor-NC group), and a miR-9-5p inhibitory expression group (inhibitor group). The changes of migration ability were detected by scratch assay. Transwell invasion assay was used to analyze the changes of invasion ability, and the mRNA and protein changes of E-cad and vimentin were detected by quantitative real-time PCR and Western blotting.
RESULTS:
MiR-9-5p had a targeting binding relationship with E-cad. Compared with the normal cervical tissue H8 cell line, the miR-9-5p was highly expressed in cervical cancer cell lines (C33A, siha, caski and Me180) (all P<0.05). The luciferase activity of E-cad-MUT was increased compared with that of E-cad-WT in miR-9-5p mimic cells (P<0.05). Compared with the blank control group, the protein and mRNA expressions of E-cad were decreased in the miR-9-5p mimic group (both P<0.05), which were increased in the miR-9-5p inhibitor group (both P<0.05). Compared with H8 cell line, the miR-9-5p was highly expressed in the cervical squamous cell lines (all P<0.05). Compared with the mimic-NC group, the distance of wound healing, the number of caski and Me180 cells invaded below the membrane, and the mRNA and protein expressions of vimentin were all increased in the miR-9-5p mimic group (all P<0.05), while the mRNA and protein of E-cad were decreased (both P<0.05). Compared with the inhibitor-NC group, the distance of wound healing, the number of caski and Me180 cells invading the membrane, and the mRNA and protein expressions of vimentin were decreased in the miR-9-5p inhibitor group (all P<0.05), but the mRNA and protein expressions of E-cad were increased (both P<0.05).
CONCLUSIONS
The miR-9-5p is highly expressed in cervical squamous cell carcinoma, which can increase the migration and invasion ability, and promote the EMT process of cancer cells.
Humans
;
Female
;
Cell Line, Tumor
;
Vimentin/metabolism*
;
Uterine Cervical Neoplasms/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
MicroRNAs/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Cell Movement/genetics*
;
RNA, Messenger
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
4.Knockdown of ACC1 promotes migration of esophageal cancer cell.
He QIAN ; Cheng Wei GU ; Yu Zhen LIU ; Bao Sheng ZHAO
Chinese Journal of Oncology 2023;45(6):482-489
Objective: To investigate the effect of acetyl-CoA carboxylase 1 (ACC1) knockdown on the migration of esophageal squamous cell carcinoma (ESCC) KYSE-450 cell and underlying mechanism. Methods: Lentiviral transfection was conducted to establish sh-NC control cell and ACC1 knocking down cell (sh-ACC1). Human siRNA HSP27 and control were transfected by Lipo2000 to get si-HSP27 and si-NC. The selective acetyltransferase P300/CBP inhibitor C646 was used to inhibit histone acetylation and DMSO was used as vehicle control. Transwell assay was performed to detect cell migration. The expression of HSP27 mRNA was examined by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and the expressions of ACC1, H3K9ac, HSP27 and epithelial-mesenchymal transition-related proteins E-cadherin and Vimentin were detected by western blot. Results: The expression level of ACC1 in sh-NC group was higher than that in sh-ACC1 group (P<0.01). The number of cell migration in sh-NC group was (159.00±24.38), lower than (361.80±26.81) in sh-ACC1 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC group were statistically significant compared with sh-AAC1 group (P<0.05). The migrated cell number in sh-NC+ si-NC group was (189.20±16.02), lower than (371.60±38.40) in sh-ACC1+ si-NC group (P<0.01). The migrated cell number in sh-NC+ si-NC group was higher than that in sh-NC+ si-HSP27 group (152.40±24.30, P<0.01), and the migrated cell number in sh-ACC1+ si-NC group was higher than that in sh-ACC1+ si-HSP27 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC+ si-NC group were significantly different from those in sh-ACC1+ si-NC and sh-NC+ si-HSP27 groups (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-ACC1+ si-NC group were significantly different from those in sh-ACC1+ si-HSP27 group (P<0.01). After 24 h treatment with C646 at 20 μmmo/L, the migrated cell number in sh-NC+ DMSO group was (190.80±11.95), lower than (395.80±17.10) in sh-ACC1+ DMSO group (P<0.01). The migrated cell number in sh-NC+ DMSO group was lower than that in sh-NC+ C646 group (256.20±23.32, P<0.01). The migrated cell number in sh-ACC1+ DMSO group was higher than that in sh-ACC1+ C646 group (87.80±11.23, P<0.01). The protein expressions of H3K9ac, HSP27, E-cadherin and Vimentin in sh-NC+ DMSO group were significantly different from those in sh-ACC1+ DMSO group and sh-NC+ C646 group (P<0.01). The protein expression levels of H3K9ac, HSP27, E-cadherin and Vimentin in sh-ACC1+ DMSO group were significantly different from those in sh-ACC1+ C646 group (P<0.01). Conclusion: Knockdown of ACC1 promotes the migration of KYSE-450 cell by up-regulating HSP27 and increasing histone acetylation.
Humans
;
Esophageal Neoplasms/pathology*
;
Esophageal Squamous Cell Carcinoma/genetics*
;
Vimentin/metabolism*
;
Dimethyl Sulfoxide
;
HSP27 Heat-Shock Proteins/metabolism*
;
Histones/metabolism*
;
Cadherins/metabolism*
;
Cell Movement
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
5.Decursin affects proliferation, apoptosis, and migration of colorectal cancer cells through PI3K/Akt signaling pathway.
Yi YANG ; Yan-E HU ; Mao-Yuan ZHAO ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(9):2334-2342
We investigated the effects of decursin on the proliferation, apoptosis, and migration of colorectal cancer HT29 and HCT116 cells through the phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway. Decursin(10, 30, 60, and 90 μmol·L~(-1)) was used to treat HT29 and HCT116 cells. The survival, colony formation ability, proliferation, apoptosis, wound hea-ling area, and migration of the HT29 and HCT116 cells exposed to decursin were examined by cell counting kit-8(CCK8), cloning formation experiments, Ki67 immunofluorescence staining, flow cytometry, wound healing assay, and Transwell assay, respectively. Western blot was employed to determine the expression levels of epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, B-cell lymphoma/leukemia-2(Bcl-2), Bcl-2-associated X protein(Bax), tumor suppressor protein p53, PI3K, and Akt. Compared with the control group, decursin significantly inhibited the proliferation and colony number and promoted the apoptosis of HT29 and HCT116 cells, and it significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax. Decursin inhibited the wound healing and migration of the cells, significantly down-regulated the expression of N-cadherin and vimentin, and up-regulated the expression of E-cadherin. In addition, it significantly down-regulated the expression of PI3K and Akt and up-regulated that of p53. In summary, decursin may regulate epithelial-mesenchymal transition(EMT) via the PI3K/Akt signaling pathway, thereby affecting the proliferation, apoptosis, and migration of colorectal cancer cells.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
bcl-2-Associated X Protein
;
Vimentin/metabolism*
;
Cell Proliferation
;
Signal Transduction
;
Apoptosis
;
Cell Line, Tumor
;
Colorectal Neoplasms/genetics*
;
Cadherins/genetics*
;
Cell Movement
6.Central Granular Cell Odontogenic Tumor: A Literature Review of Cases Reported in the Last 71 Years with a New Case Report.
Fatemeh MASHHADIABBAS ; Sanaz GHOLAMITOGHCHI ; Roohollah SAFARPOUR
Chinese Medical Sciences Journal 2023;38(2):138-146
Central granular cell odontogenic tumors (CGCOTs) are rare, benign, slowly growing odontogenic neoplasms. Due to their uncertain histogenesis, CGCOTs are still not included as a distinct entity in the WHO classification (2017) of odontogenic tumors. We report a case of CGCOT involving the right side of maxillary anterior region of a 39-year-old white female. Immunohistochemical staining showed that granular cells positively expressed CD68 and vimentin, and negatively expressed S-100 protein. Meanwhile, we searched PubMed, Google Scholar, and Scopus databases to summary the clinico-pathological features of 51 reported cases of CGCOT. The results showed that the granular cells of 28.6% cases were immunopositive for vimentin and CD68, and odontogenic epithelial cells were positive immunoreactivity for cytokeratin. These findings reinforced the mesenchymal origin of granular cells and the odontogenic nature of epithelium islands.
Humans
;
Female
;
Adult
;
Vimentin
;
Odontogenic Tumors/pathology*
;
Epithelial Cells/pathology*
;
Keratins
7.miR-497 inhibits the growth and metastasis of SGC-7901 human gastric cancer anoikis resistant cells via blocking Wnt/β-catenin signaling pathway.
Li YU ; Ying XU ; Jingrui YANG ; Liu GAO ; Haixiang LI ; Zihan WANG ; Zhaojun ZHANG ; Yunzhi LING
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):617-625
Objective To investigate the effects of microRNA497 (miR-497) on the metastasis of gastric cancer and its possible molecular mechanism. Methods SGC-7901 gastric cancer parent cells were cultured in an ultra-low adhesion environment, and the anoikis resistance model of SGC-7901 cells was created after re-adhesion. Clone formation assay, flow cytometry, TranswellTM test and scratch healing test were used to detect the differences of biological behavior compared with their parent cells. Fluorescence quantitative PCR was performed to detect the expression of miR-497. Western blot analysis was used to detect the changes of key proteins of Wnt/β-catenin signaling pathway and epithelial mesenchymal transformation (EMT) related proteins such as vimentin and E-cadherin. Parent cells and anoikis resistant SGC-7901 cells were transfected with miR-497 inhibitor or miR-497 mimic, and CCK-8 assay was used to detect the proliferation activity. TranswellTM invasion assay was performed to detect the invasion ability of cells. TranswellTM migration test and scratch healing assay was used to determine the migration ability. Western blot analysis was used to detect the expressions of Wnt1, β-catenin, vimentin and E-cadherin. By transfecting miR-497 mimic into the anoikis resistance SGC-7901 cells and inoculating them subcutaneously in nude mice, the changes in the volume and mass of tumor tissues were measured and recorded. Western blot analysis was used to determine the expressions of Wnt1, β-catenin, vimentin and E-cadherin of tumor tissues. Results Compared with the parent cells, the anoikis resistance SGC-7901 gastric cancer cells had faster proliferation rate, stronger colony formation, lower apoptosis rate, stronger invasion and migration ability. The expression of miR-497 was significantly decreased. After down-regulation of miR-497, the proliferation ability, invasion and migration ability were significantly enhanced. The expressions of Wnt1, β-catenin and vimentin increased significantly, while E-cadherin decreased notably. The results of up-regulation miR-497 were the opposite. The tumor growth rate, tumor volume and mass of miR-497 overexpression group were significantly lower than those of control group. The expressions of Wnt1, β-catenin and vimentin decreased significantly, while the expression of E-cadherin increased significantly. Conclusion The expression of miR-497 is low in the anoikis resistance SGC-7901 cells. miR-497 can inhibit the growth and metastasis of gastric cancer cells by blocking Wnt/β-catenin signaling pathway and EMT.
Animals
;
Mice
;
Humans
;
beta Catenin/metabolism*
;
MicroRNAs/metabolism*
;
Vimentin/metabolism*
;
Stomach Neoplasms/pathology*
;
Anoikis/genetics*
;
Wnt Signaling Pathway/genetics*
;
Mice, Nude
;
Cell Proliferation/genetics*
;
Cadherins/genetics*
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Movement/genetics*
8.The expression and significance of Piezo1 in chronic rhinosinusitis with nasal polyps.
Longlan SHU ; Yijun LIU ; Panhui XIONG ; Xiaocong JIANG ; Bowen ZHENG ; Yu GU ; Yang SHEN ; Yucheng YANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(11):886-896
Objective:To explore the expression and importance of Piezo1, E-cadherin, and Vimentin in nasal polyps patients. Methods:Thirty-five patients undergoing endoscopic sinus surgery under general anesthesia were streamed into 20 cases of nasal polyps(NP group) and 15 cases of simple septoplasty without any sinus disease(Control group). Immunofluorescence staining and Western Blot were applied to detect the protein level of Piezo1, E-cadherin, and Vimentin in NP tissues and nasal polyp-derived primary human nasal epithelial cells(pHNECs). Also, BEAS-2B cell lines were treated with human TGF-β1 protein to establish epithelial mesenchymal transition(EMT) model in vitro and quantitative real-time polymerase chain reaction were used to calculate Piezo1 and above biomarkers in the model. Results:Compared with control group, Piezo1 and Vimentin showed higher level while E-cadherin was lower in NP tissues and pHNECs.In EMT model in vitro, Piezo1 and Vimentin were demonstrated higher expression with decreased level of E-cadherin. Conclusion:The tendency of Piezo1 is consistent with the mesenchymal-related biomarker Vimentin, going against with epithelial-related biomarker E-cadherin, implying its involvement with EMT process in nasal polyps.
Humans
;
Biomarkers/metabolism*
;
Cadherins/metabolism*
;
Chronic Disease
;
Epithelial-Mesenchymal Transition
;
Nasal Polyps/metabolism*
;
Rhinosinusitis
;
Sinusitis
;
Transforming Growth Factor beta1/metabolism*
;
Vimentin/metabolism*
9.Long non-coding RNA colon cancer-associated transcript 1-Vimentin axis promoting the migration and invasion of HeLa cells.
Zhangfu LI ; Jiangbei YUAN ; Qingen DA ; Zilong YAN ; Jianhua QU ; Dan LI ; Xu LIU ; Qimin ZHAN ; Jikui LIU
Chinese Medical Journal 2023;136(19):2351-2361
BACKGROUND:
Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.
METHODS:
CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.
RESULTS:
RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.
CONCLUSION
CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.
Humans
;
HeLa Cells
;
RNA, Long Noncoding/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Vimentin/metabolism*
;
MicroRNAs/metabolism*
;
Colonic Neoplasms/genetics*
;
RNA-Binding Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Movement/genetics*
10.Effect of acetylalkannin from Arnebia euchroma on proliferation, migration, and invasion of human melanoma A375 cells.
Ying-Ying KANG ; Qian QIAN ; Ya YANG ; Ying YANG ; Fang XU ; Min LI ; Jian-Guang LI
China Journal of Chinese Materia Medica 2023;48(18):5049-5055
This study aimed to explore the effect and mechanism of acetylalkannin from Arnebia euchroma on the proliferation, migration, and invasion of human melanoma A375 cells. A375 cells were divided into a blank group, and low-, medium-, and high-dose acetylalkannin groups(0.5, 1.0, and 2.0 μmol·L~(-1)). The MTT assay was used to detect cell proliferation. Cell scratch and transwell migration assays were used to detect cell migration ability, and the transwell invasion assay was used to detect cell invasion ability. Western blot was used to detect the protein expression of migration and invasion-related N-cadherin, vimentin, matrix metalloproteina-se-9(MMP-9), and Wnt/β-catenin pathway-related Wnt1, Axin2, glycogen synthase kinase-3β(GSK-3β), phosphorylated GSK-3β(p-GSK-3β), β-catenin, cell cycle protein D_1(cyclin D_1), and p21. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) was used to detect the mRNA expression of E-cadherin, matrix metalloproteinase-2(MMP-2), N-cadherin, vimentin, β-catenin, snail-1, and CD44. MTT results showed that the cell inhibition rates in the acetylalkannin groups significantly increased as compared with that in the blank group(P<0.01). The results of cell scratch and transwell assays showed that compared with the blank group, the acetylalkannin groups showed reduced cell migration and invasion, and migration and invasion rates(P<0.05, P<0.01) and weakened horizontal and vertical migration and invasion abilities. Western blot results showed that compared with the blank group, the high-dose acetylalkannin group showed increased expression of Axin2 protein(P<0.05), and decreased expression of N-cadherin, vimentin, MMP-9, Wnt1, p-GSK-3β, β-catenin, cyclin D_1, and p21 proteins(P<0.05, P<0.01). The expression of GSK-3β protein did not change significantly. PCR results showed that the overall trend of MMP-2, N-cadherin, vimentin, β-catenin, snail-1, and CD44 mRNA expression was down-regulated(P<0.01), and the expression of E-cadherin mRNA increased(P<0.01). Acetylalkannin can inhibit the proliferation, migration, and invasion of human melanoma A375 cells, and its mechanism of action may be related to the regulation of Wnt/β-catenin signaling pathway.
Humans
;
Matrix Metalloproteinase 2/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
beta Catenin/metabolism*
;
Vimentin/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Cell Line, Tumor
;
Wnt Signaling Pathway
;
Cadherins/genetics*
;
Melanoma/genetics*
;
Cyclin D/metabolism*
;
Cell Proliferation
;
Boraginaceae/genetics*
;
RNA, Messenger
;
Cell Movement

Result Analysis
Print
Save
E-mail