1.Hepatitis E virus infection among blood donors in Zhengzhou
Hongna ZHAO ; Yueguang WEI ; Lumin YAN ; Tiantian TU ; Shumin WANG ; Yihui WEI ; Yifang WANG ; Lei ZHAO ; Mingjun CHEN
Chinese Journal of Blood Transfusion 2025;38(1):13-18
[Objective] To analyze the infection status of hepatitis E virus (HEV) among blood donors in Zhengzhou, so as to provide data support for formulating local blood screening strategies. [Methods] Random samples from blood donors from January to December 2022 were tested for HEV RNA using PCR technology. Reactive samples were sequenced for gene analysis, and the donors were followed up. [Results] Among 21 311 samples, 3(0.14‰) were reactive for HEV RNA, all of whom were male. Genetic sequencing results revealed that one strong positive sample was genotype 4, while sequencing failed for the other two due to low viral load. A follow-up of 25 strong positive donors showed that ALT significantly increased on day 7 after donation, anti-HEV IgM and anti-HEV IgG turned positive. On day 21, ALT returned to normal, and on day 35, HEV RNA turned negative. Notably, anti-HEV IgM and anti-HEV IgG persisted until day 482. [Conclusion] There is HEV infection among blood donors in Zhengzhou, and it is necessary to expand the screening scope to comprehensively explore the prevalence and genotype distribution of HEV among blood donors.
2.Nasal-to-Brain Drug Delivery Strategies for Active Ingredients of Traditional Chinese Medicine:A Review
Yang CHEN ; Tiantian WANG ; Yufang HUANG ; Guangdi YANG ; Shengmou HU ; Xiaomeng LEI ; Wenliu ZHANG ; Dongxun LI ; Canjian WANG ; Guosong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):252-261
Central nervous system(CNS) disorders are characterized by complex pathological mechanisms and the presence of the blood-brain barrier(BBB), which significantly limits the effectiveness of drug therapy. Traditional drug delivery modes include oral administration, intravenous injection and transdermal delivery, which have certain advantages, but it is difficult for the drugs to effectively cross the BBB. Therefore, it is crucial to find drug delivery modes that can efficiently traverse the BBB. Nasal drug delivery, as a non-invasive method, can realize the targeted delivery of drugs to the CNS via three pathways, including olfactory neurons, trigeminal neurons and blood circulation, and shows a broad application prospect in the treatment of CNS diseases. Numerous studies have further confirmed that nasal drug delivery combined with novel drug delivery systems such as lipid nanocarriers, nanoparticles, nanoemulsions and composite in situ gels can effectively load the active components of traditional Chinese medicine(TCM), and significantly increase drug concentration in the brain, which provides new strategies for the treatment of CNS diseases. In this paper, the current status of drug delivery for CNS diseases was systematically sorted out, the characteristics of nasal drug delivery were discussed in depth, and the research progress of passive targeting, active targeting, and "guiding the meridian" drug delivery strategies for the nasal-to-brain transport of TCM active components was summarized and analyzed, which was aimed to provide references and insights for the development of drugs for CNS diseases and the application of TCM in nasal-to-brain delivery.
3.Nasal-to-Brain Drug Delivery Strategies for Active Ingredients of Traditional Chinese Medicine:A Review
Yang CHEN ; Tiantian WANG ; Yufang HUANG ; Guangdi YANG ; Shengmou HU ; Xiaomeng LEI ; Wenliu ZHANG ; Dongxun LI ; Canjian WANG ; Guosong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):252-261
Central nervous system(CNS) disorders are characterized by complex pathological mechanisms and the presence of the blood-brain barrier(BBB), which significantly limits the effectiveness of drug therapy. Traditional drug delivery modes include oral administration, intravenous injection and transdermal delivery, which have certain advantages, but it is difficult for the drugs to effectively cross the BBB. Therefore, it is crucial to find drug delivery modes that can efficiently traverse the BBB. Nasal drug delivery, as a non-invasive method, can realize the targeted delivery of drugs to the CNS via three pathways, including olfactory neurons, trigeminal neurons and blood circulation, and shows a broad application prospect in the treatment of CNS diseases. Numerous studies have further confirmed that nasal drug delivery combined with novel drug delivery systems such as lipid nanocarriers, nanoparticles, nanoemulsions and composite in situ gels can effectively load the active components of traditional Chinese medicine(TCM), and significantly increase drug concentration in the brain, which provides new strategies for the treatment of CNS diseases. In this paper, the current status of drug delivery for CNS diseases was systematically sorted out, the characteristics of nasal drug delivery were discussed in depth, and the research progress of passive targeting, active targeting, and "guiding the meridian" drug delivery strategies for the nasal-to-brain transport of TCM active components was summarized and analyzed, which was aimed to provide references and insights for the development of drugs for CNS diseases and the application of TCM in nasal-to-brain delivery.
4.Safety and efficacy of human umbilical cord-derived mesenchymal stem cells in COVID-19 patients: A real-world observation.
Siyu WANG ; Tao YANG ; Tiantian LI ; Lei SHI ; Ruonan XU ; Chao ZHANG ; Zerui WANG ; Ziying ZHANG ; Ming SHI ; Zhe XU ; Fu-Sheng WANG
Chinese Medical Journal 2025;138(22):2984-2992
BACKGROUND:
The effects of human umbilical cord-derived mesenchymal stem cell (UC-MSC) treatment on coronavirus disease 2019 (COVID-19) patients have been preliminarily characterized. However, real-world data on the safety and efficacy of intravenous transfusions of MSCs in hospitalized COVID-19 patients at the convalescent stage remain to be reported.
METHODS:
This was a single-arm, multicenter, real-word study in which a contemporaneous external control was included as the control group. Besides, severe and critical COVID-19 patients were considered together as the severe group, given the small number of critical patients. For a total of 110 patients, 21 moderate patients and 31 severe patients were enrolled in the MSC treatment group, while 26 moderate patients and 32 severe patients were enrolled in the control group. All patients received standard treatment. The MSC treatment patients additionally received intravenous infusions of MSCs at a dose of 4 × 10 7 cells on days 0, 3, and 6, respectively. The clinical outcomes, including adverse events (AEs), lung lesion proportion on chest computed tomography, pulmonary function, 6-min walking distance (6-MWD), clinical symptoms, and laboratory parameters, were measured on days 28, 90, 180, 270, and 360 during the follow-up visits.
RESULTS:
In patients with moderate COVID-19, MSC treatment improved pulmonary function parameters, including forced expiratory volume in the first second (FEV1) and maximum forced vital capacity (VCmax) on days 28 (FEV1, 2.75 [2.35, 3.23] vs . 2.11 [1.96, 2.35], P = 0.008; VCmax, 2.92 [2.55, 3.60] vs . 2.47 [2.18, 2.68], P = 0.041), 90 (FEV1, 2.93 [2.63, 3.27] vs . 2.38 [2.24, 2.63], P = 0.017; VCmax, 3.52 [3.02, 3.80] vs . 2.59 [2.45, 3.15], P = 0.017), and 360 (FEV1, 2.91 [2.75, 3.18] vs . 2.30 [2.16, 2.70], P = 0.019; VCmax,3.61 [3.35, 3.97] vs . 2.69 [2.56, 3.23], P = 0.036) compared with the controls. In addition, in severe patients, MSC treatment notably reduced the proportion of ground-glass lesions in the whole lung volume on day 90 ( P = 0.045) compared with the controls. No difference in the incidence of AEs was observed between the two groups. Similarly, no significant differences were found in the 6-MWD, D-dimer levels, or interleukin-6 concentrations between the MSC and control groups.
CONCLUSIONS:
Our results demonstrate the safety and potential of MSC treatment for improved lung lesions and pulmonary function in convalescent COVID-19 patients. However, comprehensive and long-term studies are required to confirm the efficacy of MSC treatment.
TRIAL REGISTRATION
Chinese Clinical Trial Registry, ChiCTR2000031430.
Humans
;
COVID-19/therapy*
;
Female
;
Male
;
Mesenchymal Stem Cell Transplantation/adverse effects*
;
Middle Aged
;
Adult
;
Umbilical Cord/cytology*
;
Mesenchymal Stem Cells/cytology*
;
SARS-CoV-2
;
Aged
;
Treatment Outcome
5.Mechanism of 4-methylcatechol in inhibiting fibroblast-like synoviocyte migration and suppressing inflammatory responses in treatment of rheumatoid arthritis.
Zhendong YING ; Peng WANG ; Lei ZHANG ; Dailing CHEN ; Qiuru WANG ; Qibin LIU ; Tiantian TANG ; Changjun CHEN ; Qingwei MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1051-1060
OBJECTIVE:
To investigate the effects of 4-methylcatechol (4MC) on the migration and inflammatory response in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), as well as its underlying mechanisms of action.
METHODS:
RA-FLS was isolated from synovial tissue donated by RA patients, and the optimal concentration of 4MC was determined by cell counting kit 8 method for subsequent experiments, and the effect of 4MC on the migratory ability of RA-FLS was evaluated via a cell scratch assay. An inflammation model of RA-FLS was induced by tumor necrosis factor α (TNF-α). Real-time fluorescence quantitative PCR and ELISA were employed to detect the gene and protein expression levels of interleukin-1β (IL-1β) and IL-6 in RA-FLS and their culture supernatants, respectively, thereby investigating the anti-inflammatory effects of 4MC. Western blot was used to examine the expressions of nuclear factor κB (NF-κB) signaling pathway-related proteins, including inhibitor of NF-κB-α (IKBα), phosphorylated (P)-IκBα, NF-κB-inducing kinase α (IKKα), P-IKKαβ, P-p65, and p65. Cellular immunofluorescence was utilized to detect the expression and localization of p65 in RA-FLS, exploring whether 4MC exerts its anti-inflammatory effects by regulating the NF-κB signaling pathway. Finally, a collagen-induced arthritis (CIA) mouse model was established. The anti-RA effect of 4MC in vivo was evaluated by gross observation and histological examination.
RESULTS:
4MC inhibited RA-FLS migration in a concentration-dependent manner. In the TNF-α-induced RA-FLS inflammation model, 4MC significantly decreased the gene and protein expression levels of IL-1β and IL-6. Furthermore, 4MC markedly reduced the ratios of P-IΚBα/IΚBα, P-IKKαβ/IKKα, and P-p65/p65, thereby blocking the transcriptional activity of p65 by inhibiting its nuclear translocation. This mechanism effectively suppressed the activation of the TNF-α-mediated NF-κB signaling pathway. Animal studies demonstrated that 4MC [10 mg/(kg·day)] significantly lowered serum levels of IL-1β, IL-6, and TNF-α, and alleviated arthritis severity and bone destruction in CIA mice.
CONCLUSION
4MC not only inhibits the migration of RA-FLS but also mitigates their inflammatory response by suppressing the NF-κB signaling pathway, thereby effectively exerting its anti-RA effects.
Synoviocytes/metabolism*
;
Arthritis, Rheumatoid/metabolism*
;
Animals
;
Cell Movement/drug effects*
;
Humans
;
Catechols/therapeutic use*
;
Fibroblasts/drug effects*
;
Mice
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/cytology*
;
Cells, Cultured
;
Male
;
Arthritis, Experimental
;
Anti-Inflammatory Agents/pharmacology*
;
NF-KappaB Inhibitor alpha
;
Inflammation
6.Effectiveness comparison of anterior cervical discectomy and fusion with zero-profile three-dimensional-printed interbody fusion Cage and titanium plate fusion Cage.
Yuwei LI ; Xiuzhi LI ; Bowen LI ; Yunling GU ; Tiantian YANG ; Lei ZHAO ; Wei CUI ; Shifeng GU ; Haijiao WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1187-1195
OBJECTIVE:
To compare the effectiveness of a zero-profile three-dimensiaonal (3D)-printed microporous titanium alloy Cage and a conventional titanium plate combined with a polyether-ether-ketone (PEEK)-Cage in the treatment of single-segment cervical spondylotic myelopathy (CSM) by anterior cervical discectomy and fusion (ACDF).
METHODS:
The clinical data of 83 patients with single-segment CSM treated with ACDF between January 2022 and January 2023 were retrospectively analyzed, and they were divided into 3D-ZP group (35 cases, using zero-profile 3D-printed microporous titanium alloy Cage) and CP group (48 cases, using titanium plate in combination with PEEK-Cage). There was no significant difference in gender, age, disease duration, surgical intervertebral space, and preoperative Japanese Orthopaedic Association (JOA) score, visual analogue scale (VAS) score, neck disability index (NDI), vertebral height at the fusion segment, Cobb angle, and other baseline data between the two groups (P>0.05). The operation time, intraoperative blood loss, hospital stay, complications, interbody fusion, and prosthesis subsidence were recorded and compared between the two groups. VAS score, NDI, and JOA score were used to evaluate the improvement of pain and function before operation, at 3 months after operation, and at last follow-up, and the vertebral height at the fusion segment and Cobb angle were measured by imaging. The degree of dysphagia was assessed by the Bazaz dysphagia scale at 1 week and at last follow-up.
RESULTS:
The operation was successfully completed in all the 83 patients. There was no significant difference in intraoperative blood loss and hospital stay between the two groups (P>0.05), but the operation time in the 3D-ZP group was significantly shorter than that in the CP group (P<0.05). Patients in both groups were followed up 24-35 months, with an average of 25.3 months, and there was no significant difference in the follow-up time between the two groups (P>0.05). The incidence and grade of dysphagia in CP group were significantly higher than those in 3D-ZP group at 1 week after operation and at last follow-up (P<0.05). There was no dysphagia in 3D-ZP group at last follow-up. There was no complication such as implant breakage or displacement in both groups. The intervertebral fusion rates of 3D-ZP group and CP group were 65.71% (23/35) and 60.42% (29/48) respectively at 3 months after operation, and there was no significant difference between the two groups [OR (95%CI)=1.256 (0.507, 3.109), P=0.622]. The JOA score, VAS score, and NDI significantly improved in the 3D-ZP group at 3 months and at last follow-up when compared with preoperative ones (P<0.05), but there was no significant difference between the two groups (P>0.05). There was no significant difference in the improvement rate of JOA between the two groups at last follow-up (P>0.05). At 3 months after operation and at last follow-up, the vertebral height at the fusion segment and Cobb angle significantly improved in both groups, and the two indexes in 3D-ZP group were significantly better than those in CP group (P<0.05). At last follow-up, the incidence of prosthesis subsidence in 3D-ZP group (8.57%) was significantly lower than that in CP group (29.16%) (P<0.05).
CONCLUSION
The application of zero-profile 3D-printed Cage and titanium plate combined with PEEK-Cage in single-segment ACDF can both reconstruct the stability of cervical spine and achieve good effectiveness. Compared with the latter, the application of the former in ACDF can shorten the operation time, reduce the incidence of prosthesis subsidence, and reduce the incidence of dysphagia.
Humans
;
Spinal Fusion/instrumentation*
;
Titanium
;
Cervical Vertebrae/surgery*
;
Diskectomy/instrumentation*
;
Bone Plates
;
Male
;
Printing, Three-Dimensional
;
Female
;
Retrospective Studies
;
Middle Aged
;
Treatment Outcome
;
Benzophenones
;
Adult
;
Spondylosis/surgery*
;
Aged
;
Polymers
;
Ketones
;
Polyethylene Glycols
7.Palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis: A new target for anti-myocardial fibrosis.
Xuewen YANG ; Yanwei ZHANG ; Xiaoping LENG ; Yanying WANG ; Manyu GONG ; Dongping LIU ; Haodong LI ; Zhiyuan DU ; Zhuo WANG ; Lina XUAN ; Ting ZHANG ; Han SUN ; Xiyang ZHANG ; Jie LIU ; Tong LIU ; Tiantian GONG ; Zhengyang LI ; Shengqi LIANG ; Lihua SUN ; Lei JIAO ; Baofeng YANG ; Ying ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4789-4806
Myocardial fibrosis is a serious cause of heart failure and even sudden cardiac death. However, the mechanisms underlying myocardial ischemia-induced cardiac fibrosis remain unclear. Here, we identified that the expression of sterile alpha and TIR motif containing 1 (SARM1), was increased significantly in the ischemic cardiomyopathy patients, dilated cardiomyopathy patients (GSE116250) and fibrotic heart tissues of mice. Additionally, inhibition or knockdown of SARM1 can improve myocardial fibrosis and cardiac function of myocardial infarction (MI) mice. Moreover, SARM1 fibroblasts-specific knock-in mice had increased deposition of extracellular matrix and impaired cardiac function. Mechanically, elevated expression of SARM1 promotes the deposition of extracellular matrix by directly modulating P4HA1. Notably, by using the Click-iT reaction, we identified that the increased expression of ZDHHC17 promotes the palmitoylation levels of SARM1, thereby accelerating the fibrosis process. Based on the fibrosis-promoting effect of SARM1, we screened several drugs with anti-myocardial fibrosis activity. In conclusion, we have unveiled that palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis. Inhibition of SARM1 is a potential strategy for the treatment of myocardial fibrosis. The sites where SARM1 interacts with P4HA1 and the palmitoylation modification sites of SARM1 may be the active targets for anti-fibrosis drugs.
8.Toxicity Attenuation Mechanism on Processing Method for Aconiti Lateralis Radix Praeparata in Guilingji Based on Urine Metabolomics
Jiayun XIN ; Jia CHEN ; Xike XU ; Xingrui QI ; Meixin YANG ; Tiantian LIN ; Huibo LEI ; Xianpeng ZU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):166-174
ObjectiveMetabolomics was used to reveal the mechanism of Aconiti Lateralis Radix Praeparata(ALRP) in attenuating toxicity by processing from the aspects of amino acid metabolism, oxidative stress and energy metabolism by analyzing multiple metabolic pathways. MethodTwenty-four rats were randomly divided into control group, raw group and processed group, 8 rats in each group. The raw and processed group were given with 0.64 g·kg-1 of raw ALRP and processed ALRP respectively every day, the control group was given with an equal amount of normal saline once a day. After continuous administration for 7 days, the urine, serum and heart tissue of rats were collected. Pathological examination of the heart was carried out using hematoxylin-eosin(HE) staining, and the activities of lactate dehydrogenase(LDH) and creatine kinase-MB(CK-MB) in serum and cardiac tissues were detected by microplate assay and immunoinhibition assay. The effects of ALRP on rat heart before and after processing were compared and analyzed. Ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to perform urine metabolomics analysis, and multivariate statistical analysis was used to screen for differential metabolites related to ALRP in attenuating toxicity by processing, and pathway enrichment analysis was carried out to explore the processing mechanism. ResultHE staining showed that no obvious pathological changes were observed in the heart tissue of the control group, while obvious infiltration of inflammatory cells such as plasma cells and granulocytes was observed in the heart tissue of the raw group, indicating that the raw ALRP had strong cardiotoxicity. There was no significant difference in HE staining of heart tissue between the processed group and the control group, indicating that the toxicity of ALRP was significantly reduced after processing. Compared with the control group, the activities of LDH and CK-MB were significantly increased in serum and heart tissue of the raw group, and those were significantly decreased in serum and heart tissue of the processed group, suggesting that the myocardial toxicity of processed ALRP was reduced. A total of 108 endogenous differential metabolites associated with the raw ALRP were screened using multivariate statistical analysis in positive and negative modes, of which 51 differential metabolites were back-regulated by the processed ALRP. Biological analysis of the key regulatory pathways and associated network changes showed that the pathways related to toxicity of ALRP mainly included tryptophan metabolism, arginine and proline metabolism, phenylalanine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, etc. The metabolic pathways related to the attenuation of processed ALRP mainly included aminoacyl-tRNA biosynthesis, tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and caffeine metabolism. ConclusionThe processing technology of ALRP in Guilingji can significantly attenuate the cardiotoxicity of raw products, the mechanism mainly involves amino acid metabolism, oxidative stress and energy metabolism, which can provide experimental bases for the research related to the mechanism of toxicity reduction of ALRP by processing and its clinical safety applications.
9.Perioperative cerebral protective effects of small dose norepinephrine combined with goal-directed fluid therapy in patients with cerebral revascularization
Tiantian LEI ; Lijiang MENG ; Shan ZHANG
Chongqing Medicine 2024;53(12):1850-1855
Objective To investigate the perioperative cerebral protective effects of small dose norepi-nephrine(NE)combined with goal-directed fluid therapy(GDFT)in the patients with cerebral revasculariza-tion.Methods Forty patients with scheduled superficial temporal artery-middle cerebral artery bypass graft-ing were selected as the study subjects and divided into the small dose NE combined GDFT group(group G)and small dose NE combined conventional fluid therapy group(group C),20 cases in each group.The group G conducted the fluid infusion with the stroke volume variation(SVV)as the goal orientation.The group C re-ceived the volumetric therapy by the traditional infusion regimen.The low-dose of norepinephrine(0.01-0.03 μg·kg-1·min-1)was continuously pumped after induction of anesthesia in both groups.The hemody-namic indexes and cerebral oxygen metabolism related indexes were recorded after anesthetic induction(Tt),immediately after middle cerebral artery occlusion(T2),immediately after vascular bypass perfusion(T3)and at the end of operation(T4),meanwhile,the levels of NSE and S100β was measured.The intraoperastive in-take and output amounts,postoperative complications,hospitalization duration and NIHSS scores at D0,D1,D3 and D7 were recorded.Results There were no statistically significant differences in the blocking time of mid-dle cerebral artery,intraoperative output volume,hospitalization duration,complications occurrence rate,HR at each time point,Da-jvO2 and LacPR between the two groups(P>0.05).Compared with the group C,the crystal fluid intake volume,colloid fluid intake volume and total infusion volume in the group G were signifi-cantly decreased,MAP and SjvO2 at T4 were increased significantly,CERO2 at T4 was significantly decreased,the levels of S100β protein and NSE at T4 were significantly decreased,the NIHSS score at D7 was significant-ly decreased,and the differences were statistically significant(P<0.05).Conclusion Simultaneous persistent pump injection of small dose NE in the patients with cerebral revascularization receiving GDFT could reduce intraoperative infusion total volume,stabilize hemodynamics,optimize the cerebral oxygen supply and protect the cerebral function in patients undergoing cerebral revasculopathy.
10.Progress of clinical research on neonatal platelet transfusion
Tiantian XIE ; Hongtao LEI ; Wenhua WANG ; Pu ZHAO ; Qin ZHANG
International Journal of Pediatrics 2024;51(8):543-547
Platelet transfusion is one of the critical clinical therapies of neonatal thrombocytopenia and significant preventive measures of bleeding diseases in preterm infants.The platelet transfusion rate is high in clinical practice,whereas some controversies emerge in its clinical application.Platelet transfusion decision-making should take into account the platelet count and the causes of thrombocytopenia.In addition,the presence of bleeding tendency and platelet effects on other systemic disorders should be considered.Clinicians often need to make rapid decisions about whether to transfuse platelets in a critically situation.On the basis of the comprehensive overview of issues that are closely pertinent to the field of clinical practice,this article is dedicated to elucidate the advancements in clinical research pertaining to neonatal platelet transfusions,aiming to serve as a reference for clinicians when making transfusion decisions and to chart a course for future clinical investigations.

Result Analysis
Print
Save
E-mail