1.Biological characteristics and translational research of dental stem cells.
Qianmin OU ; Zhengshi LI ; Luhan NIU ; Qianhui REN ; Xinyu LIU ; Xueli MAO ; Songtao SHI
Journal of Peking University(Health Sciences) 2025;57(5):827-835
Dental stem cells (DSCs), a distinct subset of mesenchymal stem cells (MSCs), are isolated from dental tissues, such as dental pulp, exfoliated deciduous teeth, periodontal ligament, and apical papilla. They have emerged as a promising source of stem cell therapy for tissue regeneration and autoimmune disorders. The main types of DSCs include dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Each type exhibits distinct advantages: easy access via minimally invasive procedures, multi-lineage differentiation potential, and excellent ethical acceptability. DSCs have demonstrated outstanding clinical efficacy in oral and maxillofacial regeneration, and their long-term safety has been verified. In oral tissue regeneration, DSCs are highly effective in oral tissue regeneration for critical applications such as the restoration of dental pulp vitality and periodontal tissue repair. A defining advantage of DSCs lies in their ability to integrate with host tissues and promote physiological regeneration, which render them a better option for oral tissue regenerative therapies. Beyond oral applications, DSCs also exhibit promising potential in the treatment of systemic diseases, including type Ⅱ diabetes and autoimmune diseases due to their immunomodulatory effects. Moreover, extracellular vesicles (EVs) derived from DSCs act as critical mediators for DSCs' paracrine functions. Possessing regulatory properties similar to their parental cells, EVs are extensively utilized in research targeting tissue repair, immunomodulation, and regenerative therapy-offering a "cell-free" strategy to mitigate the limitations associated with cell-based therapies. Despite these advancements, standardizing large-scale manufacturing, maintaining strict quality control, and clarifying the molecular mechanisms underlying the interaction of DSCs and their EVs with recipient tissues remain major obstacles to the clinical translation of these treatments into broad clinical use. Addressing these barriers will be critical to enhancing their clinical applicability and therapeutic efficacy. In conclusion, DSCs and their EVs represent a transformative approach in regenerative medicine, and increasing clinical evidence supports their application in oral and systemic diseases. Continuous innovation remains essential to unlocking the widespread clinical potential of DSCs.
Humans
;
Dental Pulp/cytology*
;
Translational Research, Biomedical
;
Mesenchymal Stem Cells/cytology*
;
Periodontal Ligament/cytology*
;
Stem Cells/cytology*
;
Regeneration
;
Tooth, Deciduous/cytology*
;
Cell Differentiation
;
Tissue Engineering/methods*
;
Regenerative Medicine
2.Application of growth factors and their mimetics in tissue repair.
Zhuanglin HUANG ; Yufeng CHEN ; Yuanling LIU ; Hong LIANG
Chinese Journal of Biotechnology 2025;41(4):1291-1308
Growth factors (GFs) are a class of peptides that facilitate cell growth by binding to specific receptors on the cell membrane. With unique properties, GFs are widely applied in the repair of injured tissue. To address the limitations associated with natural peptide-based GFs and recombinant GFs, researchers have developed diverse GF mimetics. This article offers a comprehensive review on common types of GFs and their applications in tissue repair and summarizes the features of GF mimetics currently under development. The aim is to provide valuable references for promoting the application of GFs in regenerative medicine.
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Humans
;
Tissue Engineering/methods*
;
Regenerative Medicine/methods*
;
Animals
;
Wound Healing/drug effects*
;
Biomimetic Materials
3.Organoids in the oral and maxillofacial region: present and future.
Yufei WU ; Xiang LI ; Hanzhe LIU ; Xiao YANG ; Rui LI ; Hui ZHAO ; Zhengjun SHANG
International Journal of Oral Science 2024;16(1):61-61
The oral and maxillofacial region comprises a variety of organs made up of multiple soft and hard tissue, which are anatomically vulnerable to the pathogenic factors of trauma, inflammation, and cancer. The studies of this intricate entity have been long-termly challenged by a lack of versatile preclinical models. Recently, the advancements in the organoid industry have provided novel strategies to break through this dilemma. Here, we summarize the existing biological and engineering approaches that were employed to generate oral and maxillofacial organoids. Then, we detail the use of modified co-culture methods, such as cell cluster co-inoculation and air-liquid interface culture technology to reconstitute the vascular network and immune microenvironment in assembled organoids. We further retrospect the existing oral and maxillofacial assembled organoids and their potential to recapitulate the homeostasis in parental tissues such as tooth, salivary gland, and mucosa. Finally, we discuss how the next-generation organoids may benefit to regenerative and precision medicine for treatment of oral-maxillofacial illness.
Organoids
;
Humans
;
Tissue Engineering/methods*
;
Coculture Techniques
;
Regenerative Medicine
;
Mouth
4.Advances in the combination of stem cell exosomes with medical devices-the new direction for combination products.
Yuewen ZHAI ; Fang HE ; Ji FANG ; Siwen LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(12):1067-1075
Exosomes (exos), nanoscale extracellular vesicles, play a critical role in tissue development and function. Stem cell-derived exos, containing various tissue repair components, show promise as natural therapeutic agents in disease treatment and regenerative medicine. However, challenges persist in their application, particularly in targeted delivery and controlled release, which are crucial for enhancing their biological efficacy. The integration of medical devices may provide a superior platform for improving drug bioavailability. Consequently, the combination products of stem cell-derived exos and medical devices present novel opportunities for expanding the therapeutic potential of exosomes. This review offers a comprehensive overview of the current research frontier in stem cell-derived exos combined with medical devices and discusses the prospective challenges and future prospects in this field.
Animals
;
Humans
;
Drug Delivery Systems
;
Equipment and Supplies
;
Exosomes/metabolism*
;
Regenerative Medicine/methods*
;
Stem Cells/metabolism*
5.Application of hydrogel-loaded stem cell exosomes in the field of tissue regeneration.
Yingying TONG ; Weiyang JIN ; Guanghua YANG
Chinese Journal of Biotechnology 2023;39(4):1351-1362
In recent years, mesenchymal stem cell (MSCs)-derived exosomes have attracted much attention in the field of tissue regeneration. Mesenchymal stem cell-derived exosomes are signaling molecules for communication among cells. They are characterized by natural targeting and low immunogenicity, and are mostly absorbed by cells through the paracrine pathway of mesenchymal stem cells. Moreover, they participate in the regulation and promotion of cell or tissue regeneration. As a scaffold material in regenerative medicine, hydrogel has good biocompatibility and degradability. Combining the two compounds can not only improve the retention time of exosomes at the lesion site, but also improve the dose of exosomes reaching the lesion site by in situ injection, and the therapeutic effect in the lesion area is significant and continuous. This paper summarizes the research results of the interaction of exocrine and hydrogel composite materials to promote tissue repair and regeneration, in order to facilitate research in the field of tissue regeneration in the future.
Hydrogels/metabolism*
;
Exosomes/metabolism*
;
Wound Healing
;
Regenerative Medicine
;
Mesenchymal Stem Cells/metabolism*
6.Differentiation of stem cells regulated by biophysical cues.
Chiyu LI ; Yubo FAN ; Lisha ZHENG
Journal of Biomedical Engineering 2023;40(4):609-616
Stem cells have been regarded with promising application potential in tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities. However, their fate is relied on their local microenvironment, or niche. Recent studied have demonstrated that biophysical factors, defined as physical microenvironment in which stem cells located play a vital role in regulating stem cell committed differentiation. In vitro, synthetic physical microenvironments can be used to precisely control a variety of biophysical properties. On this basis, the effect of biophysical properties such as matrix stiffness, matrix topography and mechanical force on the committed differentiation of stem cells was further investigated. This paper summarizes the approach of mechanical models of artificial physical microenvironment and reviews the effects of different biophysical characteristics on stem cell differentiation, in order to provide reference for future research and development in related fields.
Cues
;
Stem Cells
;
Cell Differentiation
;
Regenerative Medicine
;
Tissue Engineering
7.Cell-loaded hydrogel microspheres based on droplet microfluidics: a review.
Caiyun ZHANG ; Yi ZENG ; Na XU ; Zhiling ZHANG
Chinese Journal of Biotechnology 2023;39(1):74-85
Droplet microfluidics technology offers refined control over the flows of multiple fluids in micro/nano-scale, enabling fabrication of micro/nano-droplets with precisely adjustable structures and compositions in a high-throughput manner. With the combination of proper hydrogel materials and preparation methods, single or multiple cells can be efficiently encapsulated into hydrogels to produce cell-loaded hydrogel microspheres. The cell-loaded hydrogel microspheres can provide a three-dimensional, relatively independent and controllable microenvironment for cell proliferation and differentiation, which is of great value for three-dimensional cell culture, tissue engineering and regenerative medicine, stem cell research, single cell study and many other biological science fields. In this review, the preparation methods of cell-loaded hydrogel microspheres based on droplet microfluidics and its applications in biomedical field are summarized and future prospects are proposed.
Hydrogels/chemistry*
;
Microfluidics/methods*
;
Microspheres
;
Regenerative Medicine
;
Tissue Engineering/methods*
8.Application of decellularization-recellularization technique in plastic and reconstructive surgery.
Yujia SHANG ; Guanhuier WANG ; Yonghuan ZHEN ; Na LIU ; Fangfei NIE ; Zhenmin ZHAO ; Hua LI ; Yang AN
Chinese Medical Journal 2023;136(17):2017-2027
In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.
Tissue Engineering/methods*
;
Tissue Scaffolds/chemistry*
;
Surgery, Plastic
;
Regenerative Medicine/methods*
;
Extracellular Matrix
9.Microorganism-derived biological macromolecules for tissue engineering.
Naser AMINI ; Peiman Brouki MILAN ; Vahid Hosseinpour SARMADI ; Bahareh DERAKHSHANMEHR ; Ahmad HIVECHI ; Fateme KHODAEI ; Masoud HAMIDI ; Sara ASHRAF ; Ghazaleh LARIJANI ; Alireza REZAPOUR
Frontiers of Medicine 2022;16(3):358-377
According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.
Biocompatible Materials/chemistry*
;
Humans
;
Hyaluronic Acid
;
Regenerative Medicine
;
Tissue Engineering
;
Tissue Scaffolds/chemistry*
10.Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation.
Yunfeng LIN ; Qian LI ; Lihua WANG ; Quanyi GUO ; Shuyun LIU ; Shihui ZHU ; Yu SUN ; Yujiang FAN ; Yong SUN ; Haihang LI ; Xudong TIAN ; Delun LUO ; Sirong SHI
International Journal of Oral Science 2022;14(1):51-51
With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids (tFNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, tFNAs have been widely applied in the biomedical field as three-dimensional DNA nanomaterials. Surprisingly, tFNAs exhibit positive effects on cellular biological behaviors and tissue regeneration, which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity, tFNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization, intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic tFNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic tFNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone, cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.
Nucleic Acids/chemistry*
;
Regenerative Medicine
;
Consensus
;
Reproducibility of Results
;
DNA/chemistry*

Result Analysis
Print
Save
E-mail