1.In-vitro determination of minimum inhibitory concentration (MIC) and contact time of povidone-iodine against Staphylococcus aureus and Klebsiella aerogenes using micro suspension test, colorimetric resazurin microplate assay, and Dey Engley neutralizer assay.
Azita Racquel G. LACUNA ; Micaella C. DATO ; Loisse Mikaela M. LOTERIO ; Geraldine B. DAYRIT ; Sharon Yvette Angelina M. VILLANUEVA ; Maria Margarita M. LOTA
Acta Medica Philippina 2025;59(4):113-124
BACKGROUND AND OBJECTIVE
The human nasal passages host major human pathogens. Recent research suggests that the microbial communities inhabiting the epithelial surfaces of the nasal passages play a key factor in maintaining a healthy microenvironment by affecting both resistance to pathogens and immunological responses. Colonization of the nasal cavity by different pathogens such as Staphylococcus aureus and Klebsiella aerogenes, is associated with a higher postoperative infection morbidity. Povidone-iodine (PVP-I) as an antiseptic has been proven to display high antibacterial, antiviral, and antifungal properties even at low concentrations, and was shown to be effective in the control of infections to limit their impact and spread. It can be used as a topical antiseptic for skin decontamination and wound management, as a nasal spray, or as a gargle. There are different methods in testing the efficacy of potential antimicrobial suspensions. This study aimed to determine the concentration of PVP-I that is most effective in nasal decolonization using microsuspension test and colorimetric minimum inhibitory concentration (MIC) determination assays, resazurin microtiter assay (REMA), and Dey-Engley (D/E) neutralizer assay. The findings of this study will contribute to knowledge regarding the intended use of PVP-I in microbial control, particularly in bacterial infections.
METHODSSeveral dilutions (2.0%, 1.0%, 0.5%, 0.25%, 0.1% and 0.09%) of commercially bought 10% (10 mg per 100 ml) povidone-iodine were prepared and tested against a standardized inoculum (1x105) of Staphylococcus aureus and Klebsiella aerogenes at different contacttimes (5 seconds, 10 seconds, 30 seconds, 1 minute, and 5 minutes). Microdilution suspension test was performed to determine the log reduction per variable, while REMA and D/E neutralizer assay were used to determine the MIC. A value of greater than or equal to 5 log reduction was considered effective for microdilution suspension test. Estimates of agreement statistics were used to interpret the results of the assay in which the overall percent agreement (OPA), positive percent agreement (PPA), negative percent agreement (NPA), and Cohen’s kappa statistics were calculated.
RESULTSPovidone-iodine concentration of 0.25% exhibited ?5 log reduction against K. aerogenes at the minimum contact time of 5 seconds. On the other hand, a slightly higher PVP-I concentration was required to achieve ?5 log reduction for S. aureus at 0.5% concentration and a minimum contact time of 1 minute. There was an observed concordance of the results of REMA and D/E neutralizer as MIC colorimetric indicators, which yielded an overall test percent agreement of 90.30% (95% CI: 84.73–94.36), and a strong level of agreement (? = 0.8, pCONCLUSION
Low povidone-iodine concentrations (i.e., 0.5% against S. aureus and 0.25% against K. aerogenes) were observed to have bactericidal activity of at least 5 log reduction as rapid as the minimum contact time of 5 seconds. Furthermore, D/E and REMA, as colorimetric indicators, had comparable performance (OPA = 90.30%; ? = 0.8, p
Human
;
Bacteria
;
Povidone-iodine
;
Microbial Sensitivity Tests
;
Anti-infective Agents, Local
;
Enterobacter Aerogenes
;
Staphylococcus Aureus
2.Preparation and in vitro evaluation of FDM 3D printed theophylline tablets with personalized dosage.
A KAIDIERYA ; R G ZHANG ; H N QIAN ; Z Y ZOU ; Y DANNIYA ; T Y FAN
Journal of Peking University(Health Sciences) 2022;54(6):1202-1207
OBJECTIVE:
To explore the feasibility of preparing different doses of tablets for personalized treatment by fused deposition modeling (FDM) 3D printing technology, and to evaluate the in vitro quality of the FDM 3D printed tablets.
METHODS:
Three different sizes of hollow tablets were prepared by fused deposition modeling 3D printing technology with polyvinyl alcohol (PVA) filaments. Theophylline was chosen as the model drug. In the study, 20 mg, 50 mg and 100 mg of theophylline was filled into the cavity of the tablets, respectively. The microscopic morphology of the tablets was observed by scanning electron microscopy (SEM). The weight variation of the tablets was investigated by weighing method. The hardness of the tablets was measured by tablet hardness tester. The contents of the drugs in the tablets were determined by ultraviolet and visible spectrophotometry (UV-Vis), and the dissolution apparatus was used to assay the in vitro drug release of the tablets.
RESULTS:
The prepared FDM 3D printed tablets were all in good shape without printing defects. And there was no leakage phenomenon. The diameter and thickness of the tablets were consistent with the design. The layers were tightly connected, and the fine structure of the formulation could be clearly observed without printing defects by scanning electron microscopy. The average weight of the three sizes of tablets was (150.5±2.3) mg, (293.6±2.6) mg and (456.2±5.6) mg, respectively. The weight variation of the three sizes of tablets were boss less than 5%, which met the requirements; The hardness of the tablets all exceeded 200 N; The contents of theophylline in the three tablets were 98.0%, 97.2% and 97.9% of the dosage (20 mg, 50 mg and 100 mg), and the relative standard deviation (RSD) was 1.06%, 1.15% and 0.63% respectively; The time for 80% drug released from the three dosage of tablets was within 30 min.
CONCLUSION
Three different dosages of theophylline tablets were successfully prepared by FDM 3D printing technology in this study. The exploration may bring beneficial for the preparation of personalized dose preparations. We expect that with the development of 3D printing technology, FDM 3D printed personalized tablets can be used in the clinic as soon as possible to provide personalized treatment for patients.
Humans
;
Theophylline/chemistry*
;
Tablets/chemistry*
;
Drug Liberation
;
Printing, Three-Dimensional
;
Polyvinyl Alcohol/chemistry*
;
Technology, Pharmaceutical/methods*
3.Effect of P311 microspheres-loaded thermosensitive chitosan hydrogel on the wound healing of full-thickness skin defects in rats.
Qing Rong ZHANG ; Chang You CHEN ; Na XU ; Da Lun LYU ; Jie Zhi JIA ; Wen Hong LI ; Gao Xing LUO ; Yun Long YU ; Yi ZHANG
Chinese Journal of Burns 2022;38(10):914-922
Objective: To explore the effect of P311 microspheres-loaded thermosensitive chitosan hydrogel on the wound healing of full-thickness skin defects in rats. Methods: The method of experimental study was adopted. The polyvinyl alcohol/sodium alginate microspheres (simple microspheres), P311 microspheres, and bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA) microspheres were prepared by water-in-oil emulsification, and then their morphology was observed under a light microscope/inverted fluorescence microscope. Chitosan solution was prepared, chitosan solution and β-glycerol phosphate disodium hydrate were mixed to prepare simple thermosensitive hydrogels, and thermosensitive hydrogels loaded with simple microspheres or P311 microspheres were prepared by adding corresponding substances in simple thermosensitive hydrogels. The morphological changes of the prepared four liquids in the state of tilt was observed at 37 ℃. After being freeze-dried, the micromorphology of the prepared four liquids was observed under a scanning electron microscope. Eighteen 3-4-week-old male Sprague-Dawley rats were divided into normal group without any treatment, dressing group, chitosan group, hydrogel alone group, simple microspheres-loaded hydrogel group, and P311 microspheres-loaded hydrogel group, which were inflicted with one full-thickness skin defect wound on both sides of the back spine and were dealt correspondingly, with 3 rats in each group. Rats with full-thickness skin defects in the five groups were collected, the wound healing was observed on post injury day (PID) 0 (immediately), 5, 10, and 15, and the wound healing rates on PID 5, 10, and 15 were calculated. The wound and wound margin tissue of rats with full-thickness skin defects in the five groups on PID 15 and normal skin tissue in the same site of rats in normal group were collected, hematoxylin and eosin staining was conducted to observe the histological changes, immunohistochemical staining was performed to observe the expressions of CD31 and vascular endothelial growth factor (VEGF), and Western blotting was conducted to detect the protein expressions of CD31 and VEGF. The number of samples was all three. Data were statistically analyzed with one-way analysis of variance, analysis of variance for repeated measurement, and Bonferroni correction. Results: Simple microspheres were spherical, with loose and porous surface. The surfaces of P311 microspheres and FITC-BSA microspheres were smooth without pores, and the FITC-BSA microspheres emitted uniform green fluorescence. The diameters of the three microspheres were basically consistent, being 33.1 to 37.7 μm. Compared with chitosan solution and simple thermosensitive hydrogel, the structures of the two microspheres-loaded hydrogels were more stable in the state of tilt at 37 ℃. The two microspheres-loaded hydrogels had denser network structures than those of chitosan solution and simple thermosensitive hydrogel, and in the cross section of which microspheres with a diameter of about 30 μm could be seen. Within PID 15, the wounds of rats in the five groups were healed to different degrees, and the wound healing of rats in P311 microspheres-loaded hydrogel group was the best. On PID 5, 10, and 15, the wound healing rates of rats in dressing group and chitosan group were (26.6±2.4)%, (38.5±3.1)%, (50.9±1.5)%, (47.6±2.0)%, (58.5±3.6)%, and (66.7±4.1)%, respectively, which were significantly lower than (59.3±4.8)%, (87.6±3.2)%, (97.2±1.0)% in P311 microspheres-loaded hydrogel group (P<0.05 or P<0.01). The wound healing rates of rats in hydrogel alone group on PID 10 and 15, and in simple microspheres-loaded hydrogel group on PID 15 were (76.0±3.3)%, (84.5±3.6)%, and (88.0±2.6)%, respectively, which were significantly lower than those in P311 microspheres-loaded hydrogel group (P<0.05). The epidermis, hair follicles, and sebaceous glands could be seen in the normal skin of rats in normal group, without positive expressions of CD31 or VEGF. The wounds of rats in P311 microspheres-loaded hydrogel group on PID 15 were almost completely epithelialized, with more blood vessels, hair follicles, sebaceous glands, and positive expressions of CD31 and VEGF in the wounds than those of rats with full-thickness skin defects in the other four groups, and more protein expressions of CD31 and VEGF than those of rats in the other five groups. Conclusions: The P311 microspheres-loaded thermosensitive chitosan hydrogel can release the encapsulated drug slowly, prolong the drug action time, and promote wound healing in rats with full-thickness skin defects by promoting wound angiogenesis and re-epithelialization.
Rats
;
Male
;
Animals
;
Hydrogels
;
Vascular Endothelial Growth Factor A
;
Chitosan/pharmacology*
;
Serum Albumin, Bovine/pharmacology*
;
Microspheres
;
Polyvinyl Alcohol/pharmacology*
;
Hematoxylin/pharmacology*
;
Eosine Yellowish-(YS)/pharmacology*
;
Rats, Sprague-Dawley
;
Wound Healing
;
Skin/injuries*
;
Skin Abnormalities
;
Soft Tissue Injuries
;
Water/pharmacology*
;
Alginates/pharmacology*
4.Effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice.
Meng ZHU ; Yu Zhou CHEN ; Jin Zhao OU ; Zhao LI ; Sha HUANG ; Xiao Hua HU ; Xiao Yan JU ; Ye TIAN ; Zhongwei NIU
Chinese Journal of Burns 2022;38(10):923-931
Objective: To explore the effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice. Methods: The experimental research method was adopted. The control hydrogel composed of polyvinyl alcohol and gelatin, and the water-soluble chitosan hydrogel composed of the aforementioned two materials and water-soluble chitosan were prepared by the cyclic freeze-thaw method. The fluidity of the two dressings in test tube before and after the first freeze-thawing was generally observed, and the difference in appearance of the final state of two dressings in 12-well plates were compared. According to random number table (the same grouping method below), the cell strains of L929 and HaCaT were both divided into water-soluble chitosan hydrogel group and control hydrogel group, respectively. After adding corresponding dressings and culturing for 24 h, the cell proliferation activity was measured using cell counting kit 8. Rabbit blood erythrocyte suspensions were divided into normal saline group, polyethylene glycol octyl phenyl ether (Triton X-100) group, water-soluble chitosan hydrogel group, and control hydrogel group, which were treated accordingly and incubated for 1 hour, and then the hemolysis degree of erythrocyte was detected by a microplate reader. Twenty-four female db/db mice aged 11-14 weeks were selected, and full-thickness skin defect wounds on their backs were inflicted and inoculated with the methicillin-resistant Staphylococcus aureus (MRSA), 72 h later, the mice were divided into blank control group, sulfadiazine silver hydrogel group, control hydrogel group, and water-soluble chitosan hydrogel group, which were treated accordingly. On post injury day (PID) 0 (immediately), 7, 14, and 21, the healing of the wound was observed. On PID 14 and 21, the wound healing rate was calculated. On PID 14, MRSA concentration in wounds was determined. On PID 21, the wounds were histologically analyzed by hematoxylin and eosin staining; the expression of CD31 in the wounds was detected by immunofluorescence method, and its positive percentage was calculated. Raw264.7 cells were taken and divided into interleukin-4 (IL-4) group, blank control group, control hydrogel group, and water-soluble chitosan hydrogel group, which were treated accordingly. At 48 h of culture, the percentages of CD206 positive cells were detected by flow cytometry. The number of samples was all 3. Data were statistically analyzed with independent sample t test, one-way analysis of variance, analysis of variance for repeated measurement, least significant difference test, and Dunnett T3 test. Results: Two dressings in test tube had certain fluidity before freeze-thawing and formed semi-solid gels after freeze-thawing for once. The final forms of two dressings in 12-well plates were basically stable and translucent sheets, with little difference in transparency. At 24 h of culture, the cell proliferation activities of L929 and HaCaT in water-soluble chitosan hydrogel group were significantly higher than those in control hydrogel group (with t values of 6.37 and 7.50, respectively, P<0.01). At 1 h of incubation, the hemolysis degree of erythrocyte in water-soluble chitosan hydrogel group was significantly lower than that in Triton X-100 group (P<0.01), but similar to that in normal saline group and control hydrogel group (P>0.05). On PID 0, the traumatic conditions of mice in the 4 groups were similar. On PID 7, more yellowish exudates were observed inside the wound in blank control group and control hydrogel group, while a small amount of exudates were observed in the wound in sulfadiazine silver hydrogel group and water-soluble chitosan hydrogel group. On PID 14, the wounds in blank control group and control hydrogel group were dry and crusted without obvious epithelial coverage; in sulfadiazine silver hydrogel group, the scabs fell off and purulent exudate was visible on the wound; in water-soluble chitosan hydrogel group, the base of wound was light red and obvious epithelial coverage could be observed on the wound. On PID 14, the wound healing rate in water-soluble chitosan hydrogel group was significantly higher than that in the other 3 groups (all P<0.01). On PID 21, the wound in water-soluble chitosan hydrogel group was completely closed, while the wounds in the other 3 groups were not completely healed; the wound healing rate in water-soluble chitosan hydrogel group was significantly higher than that in the other 3 groups (all P<0.01). On PID 14, the concentration of MRSA in the wound in water-soluble chitosan hydrogel group was significantly lower than that in blank control group (P<0.01), but similar to that in control hydrogel group and sulfadiazine silver hydrogel group (P>0.05). On PID 21, the new epidermis was severely damaged in blank control group; the epidermis on the wound in control hydrogel group also had a large area of defect; complete new epidermis had not yet being formed on the wound in sulfadiazine silver hydrogel group; the wound in water-soluble chitosan hydrogel group was not only completely covered by the new epidermis, the basal cells of the new epidermis were also regularly aligned. On PID 21, the percentage of CD31 positivity in the wound in water-soluble chitosan hydrogel group was (2.19±0.35)%, which was significantly higher than (0.18±0.05)% in blank control group, (0.23±0.06)% in control hydrogel group, and (0.62±0.25)% in sulfadiazine silver hydrogel group, all P<0.01. At 48 h of culture, the percentage of CD206 positive Raw264.7 cells in water-soluble chitosan hydrogel group was lower than that in IL-4 group (P>0.01) but significantly higher than that in blank control group and control hydrogel group (P<0.05 or P<0.01). Conclusions: The water-soluble chitosan hydrogel has good biosafety and can induce higher level of macrophage M2 polarization than control hydrogel without water-soluble chitosan, so it can enhance the repair effect of MRSA-infected full-thickness skin defect wounds in diabetic mice and promote rapid wound healing.
Mice
;
Female
;
Animals
;
Rabbits
;
Interleukin-4
;
Hydrogels/pharmacology*
;
Wound Healing
;
Chitosan/pharmacology*
;
Diabetes Mellitus, Experimental
;
Water
;
Methicillin-Resistant Staphylococcus aureus
;
Gelatin
;
Polyvinyl Alcohol
;
Hemolysis
;
Saline Solution
;
Eosine Yellowish-(YS)
;
Hematoxylin
;
Octoxynol
;
Silver
;
Phenyl Ethers
;
Sulfadiazine
5.Carvacrol-loaded polyvinyl alcohol/montmorillonite clay nanocomposite (PVA/MONT/Carva) as an antimicrobial agent for wound dressing
Nur Rifqah Attifah Rosman ; Woei Yenn Tong ; Syarifah Ab Rashid ; Nor Adilah Norodin ; Suzana Wahidin ; Wen Nee Tan ; Chean Ring Leong
Malaysian Journal of Microbiology 2021;17(4):352-360
Aims:
This research was conducted to develop and characterize polyvinyl alcohol (PVA)/montmorillonite (MONT) clay
incorporated with carvacrol (Carva) nanocomposite film as a potential material in wound dressing.
Methodology and results:
Organophilic MONT clay, which was initially modified from commercial MONT clay by
cetyltrimethylammonium bromide (CTAB), was used in the polymerization process using PVA. The synthesized
nanocomposites were visualized via transmission electron microscopy (TEM). The developed film (PVA/MONT/Carva
nanocomposite film) was characterized via Fourier transform infrared (FTIR). The investigation on mechanical property
and antimicrobial activity of the film was also performed. All nanocomposites are spherical, with a size of 92.8 ± 22.1 nm.
The -OH stretch, C-H stretch, aromatic group, SiO stretch, and C-O from acetyl group were identified in the
PVA/MONT/Carva nanocomposite films. During the chemical release test, carvacrol attained a plateau at 24 h, with a
total release of 62.3%. This nanocomposite exhibited a severe detrimental influence on the growth of Gram-bacteria and
yeasts, which represented a broad spectrum of antimicrobial agents. All test microorganisms showed approximately up
to 82% reduction of microbial growth during the Hohenstein challenge test. Physically, the nanocomposite films were
yellowish and apparent. The film was sturdy, flexible, elastic and consisted of excellent water holding capacity.
Conclusion, significance and impact of study
PVA/MONT/Carva nanocomposite film may have a useful potential to
be merged in the pharmaceutical application, especially in wound dressing production.
Polyvinyl Alcohol
;
Bentonite
;
Wound Healing
6.Accuracy of casts produced from conventional and digital workflows: A qualitative and quantitative analyses
The Journal of Advanced Prosthodontics 2019;11(2):138-146
PURPOSE: Comparing the accuracy of casts produced from digital workflow to that of casts produced from conventional techniques. MATERIALS AND METHODS: Whole arch alginate (ALG) and polyvinyl siloxane (PVS) impressions were taken with stock trays and custom trays, respectively. The ALG impressions were poured with type III dental stone, while the PVS impressions were poured with type IV dental stone. For the digital workflow, IOS impressions were taken and physical casts were produced by 3D printing. In addition, 3D printed casts were produced from images obtained from a laboratory scanner (LS). For each technique, a total of 10 casts were produced. The accuracies of the whole arch and separated teeth were virtually quantified. RESULTS: Whole arch cast accuracy was more superior for PVS followed by LS, ALG, and IOS. The PVS and ALG groups were inferior in the areas more susceptible to impression material distortion, such as fossae and undercut regions. The LS casts appeared to have generalized errors of minor magnitude influencing primarily the posterior teeth. The IOS casts were considerably more affected at the posterior region. On the contrary, the IOS and LS casts were more superior for single tooth accuracy followed by PVS and ALG. CONCLUSION: For whole arch accuracy, casts produced from IOS were inferior to those produced from PVS and ALG. The inferior outcome of IOS appears to be related to the span of scanning. For single tooth accuracy, IOS showed superior accuracy compared to conventional impressions.
Jupiter
;
Polyvinyls
;
Printing, Three-Dimensional
;
Siloxanes
;
Tooth
7.Three-dimensional comparison of 2 digital models obtained from cone-beam computed tomographic scans of polyvinyl siloxane impressions and plaster models
Jin Yi PARK ; Dasomi KIM ; Sang Sun HAN ; Hyung Seog YU ; Jung Yul CHA
Imaging Science in Dentistry 2019;49(4):257-263
PURPOSE: This study was performed to evaluate the dimensional accuracy of digital dental models constructed from cone-beam computed tomographic (CBCT) scans of polyvinyl siloxane (PVS) impressions and cast scan models.MATERIALS AND METHODS: A pair of PVS impressions was obtained from 20 subjects and scanned using CBCT (resolution, 0.1 mm). A cast scan model was constructed by scanning the gypsum model using a model scanner. After reconstruction of the digital models, the mesio-distal width of each tooth, inter-canine width, and inter-molar width were measured, and the Bolton ratios were calculated and compared. The 2 models were superimposed and the difference between the models was measured using 3-dimensional analysis.RESULTS: The range of mean error between the cast scan model and the CBCT scan model was −0.15 mm to 0.13 mm in the mesio-distal width of the teeth and 0.03 mm to 0.42 mm in the width analysis. The differences in the Bolton ratios between the cast scan models and CBCT scan models were 0.87 (anterior ratio) and 0.72 (overall ratio), with no significant difference (P>0.05). The mean maxillary and mandibular difference when the cast scan model and the CBCT scan model were superimposed was 53 µm.CONCLUSION: There was no statistically significant difference in most of the measurements. The maximum tooth size difference was 0.15 mm, and the average difference in model overlap was 53 µm. Digital models produced by scanning impressions at a high resolution using CBCT can be used in clinical practice.
Calcium Sulfate
;
Cone-Beam Computed Tomography
;
Dental Models
;
Orthodontics
;
Polyvinyls
;
Siloxanes
;
Tooth
8.Povidone-Iodine Pleurodesis for Chylothorax in an Extremely Low Birth Weight Infant
Jin Woo KIM ; Ju Hyun JIN ; Shin Won YOON
Neonatal Medicine 2019;26(4):233-239
Chylothorax, the accumulation of chyle in the pleural space, is a rare condition, but can lead to serious complications in neonates. Conservative therapy for chylothorax includes enteral feeding with medium-chain triglyceride-enriched diet or parenteral nutrition and administration of octreotide. Surgical management is considered in cases where there is no response to conservative therapy; however, the standardized approach to refractory neonatal chylothorax is still controversial. Chemical pleurodesis can be used when medical therapies for chylothorax fail, to avoid more invasive surgical procedures. We report an extremely preterm infant born at 26 weeks of gestation with refractory chylothorax after patent ductus arteriosus ligation. The infant was successfully treated with pleurodesis using 4% povidone-iodine, without long-term side effects.
Chyle
;
Chylothorax
;
Diet
;
Ductus Arteriosus, Patent
;
Enteral Nutrition
;
Humans
;
Infant
;
Infant, Extremely Low Birth Weight
;
Infant, Extremely Premature
;
Infant, Newborn
;
Infant, Premature
;
Ligation
;
Octreotide
;
Parenteral Nutrition
;
Pleurodesis
;
Povidone-Iodine
;
Pregnancy
9.Comparison of displacement of polyvinyl chloride and silicone left-sided double-lumen tubes during lateral positioning
Nyeong Keon KWON ; Sung Mee JUNG ; Sang Jin PARK ; Yonghee HAN
Korean Journal of Anesthesiology 2019;72(1):32-38
BACKGROUND: Compared to an equivalent sized polyvinyl chloride (PVC) double-lumen tube (DLT), a silicone DLT has a shorter endobronchial segment. The aim of this study was to compare the incidence of clinically significant displacement of left-sided PVC and silicone DLTs after a positional change to a lateral position from a supine position and determine its effect on the need for DLT repositioning for successful lung separation in patients undergoing thoracic surgery. METHODS: One hundred eight adult patients requiring one-lung ventilation were randomly divided into group P (PVC DLT, n = 54) and group S (Silicone DLT, n = 54). The position of the DLT was observed before and after lateral positioning to assess the effect of the position change. The incidence of clinically significant displacement (>10 mm) of DLT was compared between the groups. RESULTS: DLTs were clinically significantly displaced in group P (17/48, 35.4%) and group S (18/52, 34.6%) after lateral positioning (p = 0.933). A proximal displacement (31.3% [group P] and 25.0% [group S]) was more common than distal displacement (4.2% [group P] and 9.6% [group S]), with no significant intergroup difference (p = 0.494). After lateral positioning, critical malposition of DLT with bronchial herniation to the right main bronchus was 8.3% (group P) and 7.9% (group S, p = 0.906). CONCLUSION: Left-sided PVC and silicone DLTs produced comparable incidences of clinically significant displacement and, consequently, required similar rates of repositioning for successful lung separation after lateral positioning.
Adult
;
Bronchi
;
Bronchoscopy
;
Humans
;
Incidence
;
Intubation, Intratracheal
;
Lung
;
One-Lung Ventilation
;
Polyvinyl Chloride
;
Polyvinyls
;
Posture
;
Silicon
;
Silicones
;
Supine Position
;
Thoracic Surgery
;
Thoracic Surgical Procedures
10.Various macromolecules in in vitro growth medium influence growth, maturation, and parthenogenetic development of pig oocytes derived from small antral follicles
Hanna LEE ; Yongjin LEE ; Joohyeong LEE ; Geun Shik LEE ; Seung Tae LEE ; Eunsong LEE
Korean Journal of Veterinary Research 2019;59(2):81-88
This study was performed to examine the effects of various macromolecules in in vitro growth (IVG) media on the growth, maturation, and parthenogenesis (PA) of pig oocytes derived from small antral follicles (SAF). Immature oocytes were cultured for two days in IVG medium supplemented with 10% (v/v) fetal bovine serum (FBS), 10% (v/v) pig follicular fluid (PFF), 0.4% (w/v) bovine serum albumin (BSA), or 0.1% (w/v) polyvinyl alcohol (PVA) and then maintained for 44 h for maturation. After IVG, the mean diameters of the SAF treated with FBS, PVA, and no IVG-MAF (113.0–114.8 µm) were significantly larger than that of no IVG-SAF (111.8 µm). The proportion of metaphase II oocytes was higher in PFF (73.6%) than in BSA (43.5%) and PVA (53.7%) but similar to that in the FBS treatment (61.5%). FBS and PFF increased cumulus expansion significantly compared to PVA and BSA while the intraoocyte glutathione content was not influenced by the macromolecules. Blastocyst formation of PA oocytes treated with FBS (51.8%), PFF (50.4%), and PVA (45.2%) was significantly higher than that of the BSA-treated oocytes (20.6%). These results show that the PFF and FBS treatments during IVG improved the growth, maturation, and embryonic development of SAF.
Blastocyst
;
Embryonic Development
;
Female
;
Follicular Fluid
;
Glutathione
;
In Vitro Techniques
;
Metaphase
;
Oocytes
;
Parthenogenesis
;
Polyvinyl Alcohol
;
Pregnancy
;
Serum Albumin, Bovine


Result Analysis
Print
Save
E-mail