1.Olaparib and niraparib as maintenance therapy in patients with newly diagnosed and platinum-sensitive recurrent ovarian cancer: A single-center study in China.
Dengfeng WANG ; Xunwei SHI ; Jiao PEI ; Can ZHANG ; Liping PENG ; Jie ZHANG ; Jing ZHENG ; Chunrong PENG ; Xiaoqiao HUANG ; Xiaoshi LIU ; Hong LIU ; Guonan ZHANG
Chinese Medical Journal 2025;138(10):1194-1201
BACKGROUND:
Poly adenosine-diphosphate-ribose polymerase (PARP) inhibitors (PARPi) have been approved to act as first-line maintenance (FL-M) therapy and as platinum-sensitive recurrent maintenance (PSR-M) therapy for ovarian cancer in China for >5 years. Herein, we have analyzed the clinical-application characteristics of olaparib and niraparib in ovarian cancer-maintenance therapy in a real-world setting to strengthen our understanding and promote their rational usage.
METHODS:
A retrospective chart review identified patients with newly diagnosed or platinum-sensitive recurrent ovarian cancer, who received olaparib or niraparib as maintenance therapy at Sichuan Cancer Hospital between August 1, 2018, and December 31, 2021. Patient medical records were reviewed. We grouped and analyzed patients based on the type of PARPi they used (the olaparib group and the niraparib group) and the line of PARPi maintenance therapy (the FL-M setting and the PSR-M setting). The primary endpoint was the 24-month progression-free survival (PFS) rate.
RESULTS:
In total, 131 patients (olaparib: n = 67, 51.1%; niraparib: n = 64, 48.9%) were enrolled. Breast cancer susceptibility genes ( BRCA ) mutations ( BRCA m) were significantly less common in the niraparib group than in the olaparib group [9.4% (6/64) vs . 62.7% (42/67), P <0.001], especially in the FL-M setting [10.4% (5/48) vs . 91.4% (32/35), P <0.001]. The 24-month progression-free survival (PFS) rates in the FL-M and PSR-M settings were 60.4% and 45.7%, respectively. In patients with BRCA m, the 24-month PFS rates in the FL-M and PSR-M settings were 62.2% and 72.7%, respectively.
CONCLUSIONS
Olaparib and niraparib were effective in patients with ovarian cancer without any new safety signals except for skin pigmentation. In patients with BRCA m, the 24-month PFS of the PARPi used in the PSR-M setting was even higher than that used in the FL-M setting.
Humans
;
Female
;
Ovarian Neoplasms/drug therapy*
;
Piperazines/therapeutic use*
;
Middle Aged
;
Retrospective Studies
;
Phthalazines/therapeutic use*
;
Piperidines/therapeutic use*
;
Indazoles/therapeutic use*
;
Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use*
;
Adult
;
Aged
;
China
;
Neoplasm Recurrence, Local/drug therapy*
;
Progression-Free Survival
2.Poly (ADP-ribose) polymerase inhibitors in cancer therapy.
Chinese Medical Journal 2025;138(6):634-650
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have emerged as critical agents for cancer therapy. By inhibiting the catalytic activity of PARP enzymes and trapping them in the DNA, PARPis disrupt DNA repair, ultimately leading to cell death, particularly in cancer cells with homologous recombination repair deficiencies, such as those harboring BRCA mutations. This review delves into the mechanisms of action of PARPis in anticancer treatments, including the inhibition of DNA repair, synthetic lethality, and replication stress. Furthermore, the clinical applications of PARPis in various cancers and their adverse effects as well as their combinations with other therapies and the mechanisms underlying resistance are summarized. This review provides comprehensive insights into the role and mechanisms of PARP and PARPis in DNA repair, with a particular focus on the potential of PARPi-based therapies in precision medicine for cancer treatment.
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use*
;
Neoplasms/genetics*
;
DNA Repair/drug effects*
;
Animals
;
Antineoplastic Agents/therapeutic use*
3.First evidence of olaparib maintenance therapy in patients with newly diagnosed homologous recombination deficient positive/BRCA wild-type ovarian cancer: real-world multicenter study.
Jing LI ; Youguo CHEN ; Mian HE ; Xiaoxiang CHEN ; Hao WEN ; Yu KANG ; Kaijiang LIU ; Ge LOU ; Xipeng WANG ; Qinglian WEN ; Li WANG ; Zhongqiu LIN
Frontiers of Medicine 2024;18(6):1026-1034
Although olaparib has demonstrated substantial clinical benefits as maintenance therapy in BRCA mutation-carrying women with newly diagnosed advanced ovarian cancer, its effectiveness in patients without BRCA mutations remains poorly investigated. This study aims to provide the first evidence on the efficacy of mono-olaparib maintenance therapy in such context. Using real-world data from 11 high-volume tertiary care centers in China, a retrospective cohort study was conducted to assess the efficacy and safety of olaparib as first-line maintenance therapy in patients with BRCA wild-type ovarian cancer. The primary objective was 1-year progression-free survival rate. Safety was also evaluated. Fifty patients with a median age of 54 years were included, and all of them tested negative for BRCA mutations but positive for homologous recombination deficiency (HRD). The 1-year PFS rate was 75.2% (95% CI, 63.4 to 89.2), and the median PFS was 21.0 months (95% CI, 13.8 to 28.2). All the patients received olaparib at a starting dose of 300 mg twice daily, and none experienced serious adverse events (AEs). Eight (16%) patients had dose adjustment, but none discontinued olaparib treatment due to AEs. We provide the first evidence that mono-olaparib could be a safe and effective maintenance treatment option for patients newly diagnosed with HRD-positive/BRCA wild-type ovarian cancer.
Humans
;
Female
;
Phthalazines/adverse effects*
;
Piperazines/administration & dosage*
;
Middle Aged
;
Ovarian Neoplasms/genetics*
;
Retrospective Studies
;
Adult
;
Aged
;
Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage*
;
China
;
Maintenance Chemotherapy
;
BRCA2 Protein/genetics*
;
Antineoplastic Agents/adverse effects*
;
Progression-Free Survival
;
BRCA1 Protein/genetics*
4.Guidance on the management of adverse reactions induced by poly(ADP-ribose) polymerase inhibitors.
Of Zhejiang Medical Association SOCIETY OF OBSTETRICS AND GYNECOLOGY ; Of Zhejiang Medical Association SOCIETY OF UROLOGY ; Of Zhejiang Anticancer Association COMMITTEE OF BREAST CANCER ; Of Zhejiang Anticancer Association Preparation COMMITTEE OF CLINICAL PHARMACY ON ONCOLOGY ; Of Zhejiang Society For Mathematical Medicine COMMITTEE OF UROLOGY
Journal of Zhejiang University. Medical sciences 2023;51(6):765-774
The common adverse reactions caused by poly (ADP-ribose) polymerase (PARP) inhibitors include hematological toxicity, gastrointestinal toxicity and fatigue. The main prevention and treatment of hematological toxicity include: regular blood tests, referral to hematology department when routine treatment is ineffective, and being alert of myelodysplastic syndrome/acute myeloid leukemia. The key points to deal with gastrointestinal toxicity include: taking medicine at the right time, light diet, appropriate amount of drinking water, timely symptomatic treatment, prevention of expected nausea and vomiting, and so on. For fatigue, full assessment should be completed before treatment because the causes of fatigue are various; the management includes massage therapy, psychosocial interventions and drugs such as methylphenidate and Panax quinquefolius according to the severity. In addition, niraparib and fluzoparib can cause hypertension, hypertensive crisis and palpitation. Blood pressure and heart rate monitoring, timely symptomatic treatment, and multidisciplinary consultation should be taken if necessary. When cough and dyspnea occur, high resolution CT and bronchoscopy should be performed to exclude pneumonia. If necessary, PARP inhibitors should be stopped, and glucocorticoid and antimicrobial therapy should be given. Finally, more attention should be paid to drug interaction management, patient self-management and regular monitoring to minimize the risk and harm of adverse reactions of PARP inhibitors.
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors/adverse effects*
;
Phthalazines/pharmacology*
;
Poly(ADP-ribose) Polymerases
;
Fatigue/drug therapy*
5.Protective effect of borneol on the cutaneous toxicity of gilteritinib.
Yourong ZHOU ; Yiming YIN ; Xiangliang HUANG ; Yuhuai HU ; Qiaojun HE
Journal of Zhejiang University. Medical sciences 2023;52(5):544-557
OBJECTIVES:
To investigate the effect of borneol on cutaneous toxicity of gilteritinib and to explore possible compounds that can intervene with the cutaneous toxicity.
METHODS:
C57BL/6J male mice were given gilteritinib by continuous gavage for 28 d and the damage to keratinocytes in the skin tissues was observed with hematoxylin and eosin (HE) staining, TUNEL assay and immunohistochemistry. Human keratinocytes HaCaT were treated with gilteritinib, and cell death and morphological changes were examined by SRB staining and microscopy; apoptosis of HaCaT cells was examined by Western blotting, flow cytometry with propidium iodide/AnnexinⅤ double staining and immunofluorescence; the accumulation of cellular reactive oxygen species (ROS) was examined by flow cytometry with DCFH-DA. Compounds that can effectively intervene the cutaneous toxicity of gilteritinib were screened from a natural compound library using SRB method, and the intervention effect of borneol on gilteritinib cutaneous toxicity was further investigated in HaCaT cells and C57BL/6J male mice.
RESULTS:
In vivo studies showed pathological changes in the skin with apoptosis of keratinocytes in the stratum spinosum and stratum granulosum in the modeling group. Invitro studies showed apoptosis of HaCaT cells, significant up-regulation of cleaved poly (ADP-ribose) polymerase (c-PARP) and gamma-H2A histone family member X (γ-H2AX) levels, and increased accumulation of ROS in gilteritinib-modeled skin keratinocytes compared with controls. Screening of the natural compound library revealed that borneol showed excellent intervention effects on the death of HaCaT cells. In vitro, cell apoptosis was significantly reduced in the borneol+gilteritinib group compared to the gilteritinib control group. The levels of c-PARP, γ-H2AX and ROS in cells were significantly decreased. In vivo, borneol alleviated gilteritinib-induced skin pathological changes and skin cell apoptosis in mice.
CONCLUSIONS
Gilteritinib induces keratinocytes apoptosis by causing intracellular ROS accumulation, resulting in cutaneous toxicity. Borneol can ameliorate the cutaneous toxicity of gilteritinib by reducing the accumulation of ROS and apoptosis of keratinocytes in the skin tissue.
Male
;
Humans
;
Animals
;
Mice
;
Reactive Oxygen Species/metabolism*
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Mice, Inbred C57BL
;
Apoptosis
;
Poly(ADP-ribose) Polymerases/metabolism*
6.Chinese expert consensus on drug interaction management of poly ADP-ribose polymerase inhibitors.
Chinese Journal of Oncology 2023;45(7):584-593
Poly ADP-ribose polymerase inhibitors (PARPi), which approved in recent years, are recommended for ovarian cancer, breast cancer, pancreatic cancer, prostate cancer and other cancers by The National Comprehensive Cancer Network (NCCN) and Chinese Society of Clinical Oncology (CSCO) guidelines. Because most of PARPi are metabolized by cytochrome P450 enzyme system, there are extensive interactions with other drugs commonly used in cancer patients. By setting up a consensus working group including pharmaceutical experts, clinical experts and methodology experts, this paper forms a consensus according to the following steps: determine clinical problems, data retrieval and evaluation, Delphi method to form recommendations, finally formation expert opinion on PARPi interaction management. This paper will provide practical reference for clinical medical staff.
Male
;
Female
;
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Consensus
;
Ovarian Neoplasms/drug therapy*
;
Drug Interactions
;
Adenosine Diphosphate Ribose/therapeutic use*
7.TRAF6 promotes Bacillus Calmette-Guérin-induced macrophage apoptosis through the intrinsic apoptosis pathway.
Qin Mei MA ; Li LIU ; Jia Lin YU ; Zhao Qian GONG ; Xiao Ping WANG ; Xiao Ling WU ; Guang Cun DENG
Journal of Southern Medical University 2022;42(9):1279-1287
OBJECTIVE:
To investigate the role of tumor necrosis factor receptor-associated factor 6 (TRAF6) in regulating Bacillus Calmette-Guérin (BCG)-induced macrophage apoptosis.
METHODS:
The expression of TRAF6 in peripheral blood samples of 50 patients with active tuberculosis (TB) and 50 healthy individuals were detected using quantitative real-time PCR (qPCR). RAW264.7 macrophages were infected with BCG at different MOI and for different lengths of time, and the changes in expressions of Caspase 3 and TRAF6 were detected with Western blotting and qPCR. In a RAW264.7 cell model of BCG infection with TRAF6 knockdown established using RNA interference technique, the bacterial load was measured and cell apoptotic rate and mitochondrial membrane potential (MMP) were determined with flow cytometry. The expression levels of TRAF6, Caspase 3, PARP, BAX and Bcl-2 in the cells were detected using Western blotting, and the expressions of TRAF6 and Caspase 3 were also examined with immunofluorescence assay.
RESULTS:
The expression of TRAF6 was significantly upregulated in the peripheral blood of patients with active TB as compared with healthy subjects (P < 0.001). In RAW264.7 cells, BCG infection significantly increased the expressions of Caspase 3 and TRAF6, which were the highest in cells infected for 18 h and at the MOI of 15. TRAF6 knockdown caused a significant increase of bacterial load in BCG-infected macrophages (P=0.05), lowered the cell apoptotic rate (P < 0.001) and reduced the expressions of Caspase 3 (P=0.002) and PARP (P < 0.001). BCG-infected RAW264.7 cells showed a significantly increased MMP (P < 0.001), which was lowered by TRAF6 knockdown (P < 0.001); the cells with both TRAF6 knockdown and BCG infection showed a lowered BAX expression (P=0.005) and an increased expression of Bcl-2 (P=0.04).
CONCLUSION
TRAF6 promotes BCG-induced macrophage apoptosis by regulating the intrinsic apoptosis pathway.
Apoptosis
;
BCG Vaccine
;
Caspase 3/metabolism*
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Macrophages
;
Mycobacterium bovis/metabolism*
;
Poly(ADP-ribose) Polymerase Inhibitors
;
TNF Receptor-Associated Factor 6/metabolism*
;
bcl-2-Associated X Protein/metabolism*
8.Apoptotic and autophagic death union by Thuja occidentalis homeopathic drug in cervical cancer cells with thujone as the bioactive principle.
Asmita PAL ; Sucharita DAS ; Soumalee BASU ; Rita KUNDU
Journal of Integrative Medicine 2022;20(5):463-472
OBJECTIVE:
"Multi-targeting" drugs can prove fruitful to combat drug-resistance of multifactorial disease-cervical cancer. This study envisioned to reveal if Thuja homeopathic mother tincture (MT) and its bioactive component could combat human papillomavirus (HPV)-16-infected SiHa cervical cancer cells since it is globally acclaimed for HPV-mediated warts.
METHODS:
Thuja MT was studied for its antiproliferative and antimigratory properties in SiHa cells followed by microscopic determination of reactive oxygen species (ROS) generation by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) staining and loss in mitochondrial membrane potential (MtMP) by rhodamine 123 (Rh123) staining. Apoptosis and autophagy inductions were studied by acridine orange/ethidium bromide (AO/EB) staining and immunoblot analyses of marker proteins. The bioactive component of Thuja MT detected by gas chromatography-mass spectrometry was studied for antiproliferative and antimigratory properties along with in silico prediction of its cellular targets by molecular docking and oral drug forming competency.
RESULTS:
Thuja MT showed significant antiproliferative and antimigratory potential in SiHa cells at a 50% inhibitory concentration (IC50) of 17.3 µL/mL. An increase in DCFDA fluorescence and loss in Rh123 fluorescence prove that Thuja MT acted through the burst of ROS and loss in MtMP respectively. AO/EB-stained cells under the microscope and immunoblot analyses supported Thuja-induced cellular demise via dual pathways-apoptosis and autophagy. Immunoblots showed cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) along with upregulation of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B)-II, and p62 proteins. Hence, the apoptotic cascade followed a caspase-3-dependent pathway supported by PARP-1 cleavage, while autophagic death was Beclin-1-dependent and mediated by accumulation of LC3BII and p62 proteins. Thujone, detected as the bioactive principle of Thuja MT, showed greater anti-proliferative and anti-migratory potential at an IC50 of 77 µg/mL, along with excellent oral drug competency with the ability for gastrointestinal absorption and blood-brain-barrier permeation with nil toxicity. Molecular docking depicted thujone with the strongest affinity for mammalian target of rapamycin, phosphoinositide 3-kinase, and protein kinase B followed by B-cell lymphoma 2, murine double minute 2 and adenosine monophosphate-activated protein kinase, which might act as upstream triggers of apoptotic-autophagic crosstalk.
CONCLUSION
Robust "multi-targeting" anticancer potential of Thuja drug and thujone for HPV-infected cervical cancer ascertained its therapeutic efficacy for HPV infections.
Animals
;
Apoptosis
;
Autophagy
;
Beclin-1/pharmacology*
;
Bicyclic Monoterpenes
;
Caspase 3
;
Cell Line, Tumor
;
Female
;
Humans
;
Mammals/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Papillomavirus Infections/drug therapy*
;
Phosphatidylinositol 3-Kinases
;
Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Thuja/metabolism*
;
Uterine Cervical Neoplasms/pathology*
9.Effect of electroacupuncture on myocardial inflammatory injury and apoptosis in mice with acute myocardial ischemia based on VEGF-C/VEGFR-3 pathway.
Hai-Yan ZUO ; Sheng-Bing WU ; Xin WU ; Shuai CUI ; Lei WANG ; Xiao-Xiao WANG ; Hao-Sheng WU ; Si-Jia TONG ; Zhen-He PEI ; Mei-Qi ZHOU
Chinese Acupuncture & Moxibustion 2022;42(11):1269-1277
OBJECTIVE:
To observe the effect of electroacupuncture (EA) on vascular endothelial growth factor-C (VEGF-C), vascular endothelial growth factor receptor-3 (VEGFR-3), proinflammatory factors and apoptosis in myocardial tissue in mice with acute myocardial ischemia (AMI), and to explore the mechanism of EA for AMI.
METHODS:
Fifty male C57BL/6 mice were randomly divided into a sham operation group, a model group, an EA group, an inhibitor group and an inhibitor+EA group, 10 mice in each group. Except for the sham operation group, the mice in the remaining groups were intervented with ligation at the left anterior descending (LAD) coronary artery to establish AMI model. The mice in the sham operation group were intervented without ligation after thoracotomy. The mice in the EA group were intervented with EA at "Shenmen" (HT 7) and "Tongli" (HT 5), disperse-dense wave, 2 Hz/15 Hz in frequency, 1 mA in current intensity, 30 min each time, once a day, for 3 d. The mice in the inhibitor group were treated with intraperitoneal injection of SAR 131675 (12.5 mg•kg-1•d-1, once a day for 3 d). The mice in the inhibitor+EA group were injected intraperitoneally with SAR 131675 30 min before EA. The ECG before modeling, 30 min after modeling and 3 d after intervention was detected, and the ST segment displacement was recorded; after the intervention, the ELISA method was applied to measure the contents of serum creatine kinase isoenzyme (CK-MB), aspartate aminotransferase (AST) as well as tumor necrosis factor-α (TNF-α) and interleukin-23 (IL-23) in myocardial tissue; the HE staining method was used to observe the morphological changes of myocardial tissue; the immunofluorescence double labeling method was applied to measure the number of co-expression positive cells of VEGF-C/VEGFR-3 in myocardial tissue; the TUNEL method was used to detect the level of cardiomyocyte apoptosis; the Western blot method was applied to measure the protein expressions of VEGF-C, VEGFR-3, b-lymphoma-2 (Bcl-2), activated caspase-3 (Cleaved Caspase-3) and activated poly adenosine diphosphate ribose polymerase-1 (Cleaved PARP-1).
RESULTS:
Compared with the sham operation group, in the model group the ST segment displacement was increased (P<0.01); the contents of CK-MB, AST, TNF-α and IL-23 were increased (P<0.01); the arrangement of myocardial fibers was disordered, and interstitial inflammatory cell infiltration was obvious; the number of co-expression positive cells of VEGF-C/VEGFR-3 was decreased (P<0.01); the number of cardiomyocyte apoptosis was increased (P<0.01); the expressions of VEGF-C, VEGFR-3 and Bcl-2 were decreased (P<0.01); the expressions of Cleaved Caspase-3 and Cleaved PARP-1 were increased (P<0.01). Compared with the model group, in the EA group the ST segment displacement was decreased (P<0.01); the contents of CK-MB, AST, TNF-α, IL-23 were decreased (P<0.01); the severity of myocardial pathological injury was reduced; the number of co-expression positive cells of VEGF-C/VEGFR-3 was increased (P<0.01); the number of cardiomyocyte apoptosis was reduced (P<0.01); the expressions of VEGF-C, VEGFR-3 and Bcl-2 were increased (P<0.01); the expressions of Cleaved Caspase-3 and Cleaved PARP-1 were reduced (P<0.01). There was no significant difference in all the indexes between the model group and the inhibitor group (P>0.05). Compared with the model group, the protein expression of VEGF-C was increased in the inhibitor+EA group (P<0.01). Compared with the inhibitor group, in the EA group the ST segment displacement was decreased (P<0.01); the contents of CK-MB, AST, TNF-α, IL-23 were decreased (P<0.01); the severity of myocardial pathological injury was reduced; the number of co-expression positive cells of VEGF-C/VEGFR-3 was increased (P<0.05); the number of cardiomyocyte apoptosis was reduced (P<0.01); the expressions of VEGF-C, VEGFR-3 and Bcl-2 were increased (P<0.01); the expressions of Cleaved Caspase-3 and Cleaved PARP-1 were reduced (P<0.01). Compared with the inhibitor+EA group, all the indexes in the EA group were improved except the protein expression of VEGF-C (P<0.01).
CONCLUSION
EA could relieve the inflammatory reaction and apoptosis in AMI mice, and its mechanism may be related to activating VEGF-C/VEGFR-3 pathway and promoting lymphangion genesis.
Mice
;
Male
;
Animals
;
Electroacupuncture
;
Vascular Endothelial Growth Factor Receptor-3
;
Caspase 3
;
Vascular Endothelial Growth Factor C
;
Tumor Necrosis Factor-alpha/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Poly(ADP-ribose) Polymerase Inhibitors
;
Mice, Inbred C57BL
;
Myocardial Ischemia/metabolism*
;
Apoptosis
;
Interleukin-23
;
Proto-Oncogene Proteins c-bcl-2
10.HBV-upregulated Lnc-HUR1 inhibits the apoptosis of liver cancer cells.
Yongchen CHEN ; Jinyan WEN ; Dandan QI ; Xiaomei TONG ; Ningning LIU ; Xin YE
Chinese Journal of Biotechnology 2022;38(9):3501-3514
Lnc-HUR1 is an HBV-related long non-coding RNA, which can promote the proliferation of hepatoma cells and the occurrence and development of liver cancer. In this study we explored the effect of lnc-HUR1 on the apoptosis of hepatocellular carcinoma cells by taking the approach of immunoblotting, quantitative real time PCR, luciferase reporter assay, chromatin immunoprecipitation (ChIP) and flow cytometry. We found that overexpression of lnc-HUR1 significantly reduced the activity of caspase3/7 and the cleavage of PARP-1, while knocking down of lnc-HUR1 significantly increased the activity of caspase3/7 and promoted the cleavage of PARP-1 in HepG2 cells treated with TGF-β, pentafluorouracil or staurosporine. Consistently, the data from Annexin-V/PI staining showed that overexpression of lnc-HUR1 inhibited apoptosis, while knockdown of lnc-HUR1 promoted apoptosis. Moreover, overexpression of lnc-HUR1 up-regulated the apoptosis inhibitor Bcl-2 and down-regulated the pro-apoptotic factor BAX at both RNA and protein levels. In the CCL4-induced acute liver injury mice model, the expression of Bcl-2 in the liver tissue of lnc-HUR1 transgenic mice was higher than that of the control mice. The data from ChIP assay indicated that lnc-HUR1 reduced the enrichment of p53 on Bcl-2 and BAX promoters. All these results indicated that lnc-HUR1 inhibited the apoptosis by promoting the expression of apoptosis inhibitor Bcl-2 and inhibiting the expression of apoptosis promoting factor BAX. Further studies showed that lnc-HUR1 regulated the transcription of Bcl-2 and BAX in HCT116 cells, but had no effect on the expression of Bcl-2 and BAX in HCT116 p53-/- cells, indicating that lnc-HUR1 regulates the transcription of Bcl-2 and BAX dependent upon the activity of p53. In conclusion, HBV upregulated lnc-HUR1 can inhibit the apoptosis of hepatoma cells. Lnc-HUR1 inhibits apoptosis by inhibiting the transcriptional activity of p53. These results suggest that lnc-HUR1 plays an important role in the occurrence and development of HBV-related hepatocellular carcinoma.
Animals
;
Annexins/pharmacology*
;
Apoptosis
;
Carcinoma, Hepatocellular/genetics*
;
Cell Proliferation
;
Hep G2 Cells
;
Hepatitis B virus/metabolism*
;
Humans
;
Liver Neoplasms/genetics*
;
Mice
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Proto-Oncogene Proteins c-bcl-2/pharmacology*
;
RNA, Long Noncoding/metabolism*
;
Staurosporine/pharmacology*
;
Transforming Growth Factor beta/pharmacology*
;
Tumor Suppressor Protein p53/pharmacology*
;
bcl-2-Associated X Protein/pharmacology*

Result Analysis
Print
Save
E-mail