1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.Mechanotransduction proteins in intervertebral disc degeneration
Xilin GAO ; Si WU ; Chao ZHANG ; Liguo ZHU ; Bifeng FU ; Ping WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):579-589
BACKGROUND:Recent research indicates that disc degeneration is closely related to abnormal stress load,and mechanotransduction proteins play a key role in it. OBJECTIVE:To investigate the role and mechanism of mechanotransduction proteins in the mechanotransduction process induced by abnormal mechanical stimulation in disc degeneration,and to summarize the current treatment strategies targeting mechanotransduction to delay intervertebral disc degeneration. METHODS:Using"intervertebral disc,nucleus pulposus,annulus fibrosus,cartilaginous endplate,cell,mechanics,signal transduction,protein,biomechanics"as Chinese search terms,and"intervertebral disc,nucleus pulposus,annulus fibrosus,cartilaginous endplate,cell,mechanical stimulation,signal transduction,protein,biomechanics"as English search terms,relevant literature in the PubMed and CNKI databases was searched.A total of 88 articles were ultimately included for review. RESULTS AND CONCLUSION:Disc cells can sense external mechanical stimulation through various mechanotransduction proteins and convert it into biological responses within the cells.These transduction proteins mainly include collagen proteins in the extracellular matrix,cell membrane surface receptors(such as integrins and ion channels),and cytoskeleton structural proteins.Their regulation of mechanotransduction processes primarily involves the activation of multiple pathways,such as the PI3K/AKT signaling pathway,nuclear factor-kB signaling pathway,and Ca2+/Calpain2/Caspase3 pathway.Mechanotransduction proteins play a key role in the mechanotransduction of disc cells.Abnormal expression of these proteins or resulting changes in the extracellular matrix environment can disrupt the mechanical balance of disc cells,leading to disc degeneration.In-depth study of the expression and regulatory mechanisms of mechanotransduction proteins in disc cells,and identification of key pathological links and therapeutic targets,is of significant importance for developing treatment strategies for disc degeneration.Current strategies to delay intervertebral disc degeneration by targeting mechanotransduction mainly include regulation of transduction proteins and improvement of the extracellular matrix.However,research in this area is still in its early stages.As research continues,new breakthroughs are expected in the regulation of disc degeneration by mechanotransduction proteins.
3.Endothelial progenitor cell and mesenchymal stem cell therapy for vascular stent-associated diseases
Qingyin LI ; Linhua LI ; Chunle ZHANG ; Ping FU
Chinese Journal of Tissue Engineering Research 2025;29(19):4091-4101
BACKGROUND:With advancements in stem cell research,the therapeutic efficacy of adult stem cells such as endothelial progenitor cells and mesenchymal stem cells in atherosclerosis and complications arising from atherosclerosis and vascular stent implantation is gradually being recognized.Due to the limitations of intravenous infusion of adult stem cells,including poor targeting and low treatment efficiency,recent research has focused on surface modification of vascular stents to achieve localized aggregation and functional modulation of endothelial progenitor cells or mesenchymal stem cells. OBJECTIVE:To discuss the therapeutic progress of endothelial progenitor cells and mesenchymal stem cells in vascular stent-related diseases,summarize the research status of the design of vascular stents based on endothelial progenitor cells and mesenchymal stem cells. METHODS:Relevant literature was retrieved on CNKI,WanFang,PubMed,and Web of Science databases since their inception.The Chinese search terms were"endothelial injury,stenting,thrombosis,intimal hyperplasia,atherosclerosis,endothelial repair,endothelial progenitor cell,mesenchymal stem cell,vascular stent."English search terms were"endothelial injury,stenting,thrombosis,intimal hyperplasia,atherosclerosis,endothelial repair,endothelial regeneration,endothelial progenitor cell,mesenchymal stem cell,vascular stent,vascular scaffold."According to inclusion and exclusion criteria,127 articles were finally reviewed. RESULTS AND CONCLUSION:Endothelial progenitor cells and mesenchymal stem cells can treat atherosclerosis and complications of stent implantation through differentiation and paracrine effects,mainly by protecting endothelial cells,regulating the expression of inflammatory cells and cytokines,and modulating smooth muscle cell proliferation and phenotype.Mesenchymal stem cells may have adverse reactions such as thrombosis and vascular calcification in therapeutic applications,and using extracellular vesicles and co-administration with heparin for surface modification is a feasible solution.Currently,there is more research on stents based on endothelial progenitor cells,mainly focusing on recruitment,capture,proliferation,differentiation,and activity.Research on stents based on mesenchymal stem cell capture in the vascular field is relatively scarce,but exosome-loaded stents derived from mesenchymal stem cells have been found to have highly effective therapeutic efficacy.Additionally,some underlying diseases such as diabetes may affect the activity of adult stem cells,leading to the loss of effectiveness in stem cell-based stent designs.Therefore,in future stent designs,consideration should be given to the background diseases.
4.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
5.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
7.Press needle exercise therapy for stable chronic obstructive pulmonary disease: a randomized controlled trial.
Chinese Acupuncture & Moxibustion 2025;45(8):1042-1046
OBJECTIVE:
To evaluate the clinical efficacy of press needle exercise therapy for stable chronic obstructive pulmonary disease (COPD).
METHODS:
Sixty patients with stable COPD were randomly assigned to an observation group (30 cases, 1 case dropped out) and a control group (30 cases, 2 cases dropped out). Basic treatment was applied to the two groups. The control group received pulmonary rehabilitation training, while the observation group received press needle exercise therapy. Press needle was applied at Dazhui (GV14), Danzhong (CV17), Qihai (CV6), Guanyuan (CV4), Zhiyang (GV9) and bilateral Feishu (BL13), Gaohuang (BL43), Jueyinshu (BL14), Xinshu (BL15), Geshu (BL17), Pishu (BL20), Shenshu (BL23). During the press needle intervention, patients also underwent pulmonary rehabilitation training. Treatments were administered once every other day, three times a week, for 8 weeks. Pulmonary function indexes including forced expiratory volume in the first second (FEV1), FEV1 to forced vital capacity ratio (FEV1/FVC), and percentage of predicted FEV1 (FEV1%) were measured before and after treatment in the two groups. Additional assessments included the 6-minute walk test (6 MWT) and COPD assessment test (CAT) score. Clinical efficacy was also compared between the two groups.
RESULTS:
After treatment, both groups showed improvements in FEV1, FEV1/FVC, FEV1%, and 6 MWT (P<0.05), and reductions in CAT scores (P<0.05); the observation group showed higher FEV1, FEV1/FVC, FEV1%, and 6 MWT values, and lower CAT scores compared to those in the control group (P<0.05). The total effective rate in the observation group was 86.2% (25/29), higher than 60.7% (17/28) in the control group (P<0.05).
CONCLUSION
Press needle exercise therapy could effectively alleviate clinical symptoms, improve pulmonary function and exercise tolerance, and enhance quality of life in patients with stable COPD.
Humans
;
Pulmonary Disease, Chronic Obstructive/physiopathology*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Exercise Therapy/instrumentation*
;
Acupuncture Therapy/instrumentation*
;
Acupuncture Points
;
Treatment Outcome
;
Forced Expiratory Volume
;
Quality of Life
8.Lactate metabolism and acute kidney injury.
Hui LI ; Qian REN ; Min SHI ; Liang MA ; Ping FU
Chinese Medical Journal 2025;138(8):916-924
Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.
Humans
;
Acute Kidney Injury/metabolism*
;
Lactic Acid/metabolism*
;
Animals
;
Glycolysis/physiology*
;
Gluconeogenesis/physiology*
;
Kidney/metabolism*
9.Global burden of non-communicable diseases attributable to kidney dysfunction with projection into 2040.
Jing CHEN ; Chunyang LI ; Ci Li Nong BU ; Yujiao WANG ; Mei QI ; Ping FU ; Xiaoxi ZENG
Chinese Medical Journal 2025;138(11):1334-1344
BACKGROUND:
Spatiotemporal disparities exist in the disease burden of non-communicable diseases (NCDs) attributable to kidney dysfunction, which has been poorly assessed. The present study aimed to evaluate the spatiotemporal trends of the global burden of NCDs attributable to kidney dysfunction and to predict future trends.
METHODS:
Data on NCDs attributable to kidney dysfunction, quantified using deaths and disability-adjusted life-years (DALYs), were extracted from the Global Burden of Diseases Injuries, and Risk Factors (GBD) Study in 2019. Estimated annual percentage change (EAPC) of age-standardized rate (ASR) was calculated with linear regression to assess the changing trend. Pearson's correlation analysis was used to determine the association between ASR and sociodemographic index (SDI) for 21 GBD regions. A Bayesian age-period-cohort (BAPC) model was used to predict future trends up to 2040.
RESULTS:
Between 1990 and 2019, the absolute number of deaths and DALYs from NCDs attributable to kidney dysfunction increased globally. The death cases increased from 1,571,720 (95% uncertainty interval [UI]: 1,344,420-1,805,598) in 1990 to 3,161,552 (95% UI: 2,723,363-3,623,814) in 2019 for both sexes combined. Both the ASR of death and DALYs increased in Andean Latin America, the Caribbean, Central Latin America, Southeast Asia, Oceania, and Southern Sub-Saharan Africa. In contrast, the age-standardized metrics decreased in the high-income Asia Pacific region. The relationship between SDI and ASR of death and DALYs was negatively correlated. The BAPC model indicated that there would be approximately 5,806,780 death cases and 119,013,659 DALY cases in 2040 that could be attributed to kidney dysfunction. Age-standardized death of cardiovascular diseases (CVDs) and CKD attributable to kidney dysfunction were predicted to decrease and increase from 2020 to 2040, respectively.
CONCLUSION
NCDs attributable to kidney dysfunction remain a major public health concern worldwide. Efforts are required to attenuate the death and disability burden, particularly in low and low-to-middle SDI regions.
Humans
;
Noncommunicable Diseases/epidemiology*
;
Global Burden of Disease
;
Disability-Adjusted Life Years
;
Male
;
Female
;
Risk Factors
;
Middle Aged
;
Kidney Diseases/epidemiology*
;
Bayes Theorem
;
Adult
;
Aged
;
Global Health
;
Quality-Adjusted Life Years
10.The immunomodulatory effect of berbamine on mice with systemic lupus erythematosus.
Hui-Lian WANG ; Jun-Ping ZHAN ; Xi-Yun MIAO ; Qing-Liang MENG ; Jun-Fu MA
Acta Physiologica Sinica 2025;77(3):432-440
Systemic lupus erythematosus (SLE) is an autoimmune disease accompanied by various complications, and the exact etiology remains unclear. Treatments for SLE encompass hormone therapy, plasma exchange and immunoadsorption, and targeted biological therapies. Berbamine (BBM), a cellular immunopotentiator with diverse biological functions, has not been reported to have immunomodulatory and therapeutic effects on SLE. The mice were divided into control group, model group, positive control group, low, medium and high BBM groups. In control group, C57BL/6J wild mice received intraperitoneal injection of saline. In model group, MRL/lpr lupus mice were treated with intraperitoneal injection of saline. In positive control group, MRL/lpr lupus mice received intragastric administration of hydroxychloroquine sulfate tablets [Plaquenil, 150 mg/(kg·d)]. In BBM groups, MRL/lpr lupus mice received intragastric administration of different concentration of BBM respectively [20 mg/(kg·d), 50 mg/(kg·d), 100 mg/(kg·d)]. After 8 weeks of treatment, blood was collected from the retro-orbital venous plexus, and ELISA was used to detect the levels of anti-double-stranded DNA (dsDNA) antibodies, antinuclear antibodies (ANA), and anti-small nuclear ribonucleoprotein/Sm (snRNP/Sm) antibodies. Spleen tissues were collected for analysis of Th1/Th2 ratio by flow cytometry. The RNA and protein of spleen were extracted, and the levels of T-box transcription factor T-bet and GATA3 (GATA binding protein 3) mRNA and protein were detected by qRT-PCR and Western blot. The proliferation of white blood cells in the blood was tested by blood routine test. The histopathological changes of kidneys of each group were detected by HE staining. Compared with the model group, the levels of ANA, anti-dsDNA, and anti-snRNP/Sm antibodies were significantly reduced in the BBM-treated groups. The Th1/Th2 ratio was significantly decreased in the model group, but reversed by BBM. Compared with the control group, T-bet expression was significantly downregulated, while GATA3 expression was significantly upregulated in the model group. After BBM intervention, T-bet expression significantly increased, while GATA3 expression decreased compared with the model group. The number of white blood cells significantly decreased in the model group, and increased in the BBM-treated groups. In the model group, the glomerular mesangial and endothelial cells showed significant hyperplasia, clear thrombus was observed in the dilated capillaries, and inflammatory cells infiltrated in the renal interstitium. In medium and high BBM groups, the infiltration of inflammatory cells and capillary thrombosis were significantly decreased. In conclusion, BBM exhibits certain immunomodulatory effects on SLE and promotes the proliferation of white blood cells.
Animals
;
Lupus Erythematosus, Systemic/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Inbred MRL lpr
;
Female
;
Benzylisoquinolines/pharmacology*

Result Analysis
Print
Save
E-mail