1.Omics for deciphering oral microecology.
Yongwang LIN ; Xiaoyue LIANG ; Zhengyi LI ; Tao GONG ; Biao REN ; Yuqing LI ; Xian PENG
International Journal of Oral Science 2024;16(1):2-2
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Humans
;
Phylogeny
;
Biomimetics
;
Dysbiosis
;
Homeostasis
;
Mass Spectrometry
2.Identification and expression analysis of citrate synthase 3 gene family members in apple.
Xinrui LI ; Wenfang LI ; Jiaxing HUO ; Long LI ; Baihong CHEN ; Zhigang GUO ; Zonghuan MA
Chinese Journal of Biotechnology 2024;40(1):137-149
As one of the key enzymes in cell metabolism, the activity of citrate synthase 3 (CS3) regulates the substance and energy metabolism of organisms. The protein members of CS3 family were identified from the whole genome of apple, and bioinformatics analysis was performed and expression patterns were analyzed to provide a theoretical basis for studying the potential function of CS3 gene in apple. BLASTp was used to identify members of the apple CS3 family based on the GDR database, and the basic information of CS3 protein sequence, subcellular localization, domain composition, phylogenetic relationship and chromosome localization were analyzed by Pfam, SMART, MEGA5.0, clustalx.exe, ExPASy Proteomics Server, MEGAX, SOPMA, MEME, WoLF PSORT and other software. The tissue expression and inducible expression characteristics of 6 CS3 genes in apple were determined by acid content and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Apple CS3 gene family contains 6 members, and these CS3 proteins contain 473-608 amino acid residues, with isoelectric point distribution between 7.21 and 8.82. Subcellular localization results showed that CS3 protein was located in mitochondria and chloroplasts, respectively. Phylogenetic analysis divided them into 3 categories, and the number of genes in each subfamily was 2. Chromosome localization analysis showed that CS3 gene was distributed on different chromosomes of apple. The secondary structure of protein is mainly α-helix, followed by random curling, and the proportion of β-angle is the smallest. The 6 members were all expressed in different apple tissues. The overall expression trend from high to low was the highest relative expression content of MdCS3.4, followed by MdCS3.6, and the relative expression level of other members was in the order of MdCS3.3 > MdCS3.2 > MdCS3.1 > MdCS3.5. qRT-PCR results showed that MdCS3.1 and MdCS3.3 genes had the highest relative expression in the pulp of 'Chengji No. 1' with low acid content, and MdCS3.2 and MdCS3.3 genes in the pulp of 'Asda' with higher acid content had the highest relative expression. Therefore, in this study, the relative expression of CS3 gene in apple cultivars with different acid content in different apple varieties was detected, and its role in apple fruit acid synthesis was analyzed. The experimental results showed that the relative expression of CS3 gene in different apple varieties was different, which provided a reference for the subsequent study of the quality formation mechanism of apple.
Citric Acid
;
Malus/genetics*
;
Citrate (si)-Synthase
;
Phylogeny
;
Citrates
3.Identification of banana ADA1 gene family members and their expression profiles under biotic and abiotic stresses.
Qiqi ZHAO ; Wenhui REN ; Huifei ZHU ; Qiuzhen WU ; Chunyu ZHANG ; Xiaoqiong XU ; Binbin LUO ; Yuji HUANG ; Yukun CHEN ; Yuling LIN ; Zhongxiong LAI
Chinese Journal of Biotechnology 2024;40(1):190-210
The Spt-Ada-Gcn5-acetyltransferase (SAGA) is an ancillary transcription initiation complex which is highly conserved. The ADA1 (alteration/deficiency in activation 1, also called histone H2A functional interactor 1, HFI1) is a subunit in the core module of the SAGA protein complex. ADA1 plays an important role in plant growth and development as well as stress resistance. In this paper, we performed genome-wide identification of banana ADA1 gene family members based on banana genomic data, and analyzed the basic physicochemical properties, evolutionary relationships, selection pressure, promoter cis-acting elements, and its expression profiles under biotic and abiotic stresses. The results showed that there were 10, 6, and 7 family members in Musa acuminata, Musa balbisiana and Musa itinerans. The members were all unstable and hydrophilic proteins, and only contained the conservative SAGA-Tad1 domain. Both MaADA1 and MbADA1 have interactive relationship with Sgf11 (SAGA-associated factor 11) of core module in SAGA. Phylogenetic analysis revealed that banana ADA1 gene family members could be divided into 3 classes. The evolution of ADA1 gene family members was mostly influenced by purifying selection. There were large differences among the gene structure of banana ADA1 gene family members. ADA1 gene family members contained plenty of hormonal elements. MaADA1-1 may play a prominent role in the resistance of banana to cold stress, while MaADA1 may respond to the Panama disease of banana. In conclusion, this study suggested ADA1 gene family members are highly conserved in banana, and may respond to biotic and abiotic stress.
Musa/genetics*
;
Phylogeny
;
Fungal Proteins
;
Cell Nucleus
;
Histones
;
Stress, Physiological/genetics*
4.Screening and evaluation of the biocontrol efficacy of a Trichoderma brevicompactum strain and its metabolite trichodermin against banana Fusarium wilt.
Xiajun YAO ; Jin XIE ; Yanhua QI ; Bin WANG ; Wenxia FANG ; Gang TAO ; Xiliang JIANG
Chinese Journal of Biotechnology 2024;40(1):211-225
The banana Fusarium wilt (BFW) caused by Fusarium oxysporum f. sp. cubense tropical race4 (FocTR4) is difficult to control worldwide, which causes a huge economic losse to banana industry. The purpose of this study was to screen Trichoderma strains with antagonistic activity against FocTR4, to isolate and purify the active compound from the fermentation broth, so as to provide important biocontrol strains and active compound resources. In this work, Trichoderma strains were isolated and screened from the rhizosphere soil of crops, and the strains capable of efficiently inhibiting FocTR4 were screened by plate confrontation, and further confirmed by testing inhibition for the conidial germination and mycelial growth of FocTR4. The phylogenetic tree clarified the taxonomic status of the biocontrol strains. Moreover, the active components in the fermentation broth of the strains were separated and purified by column chromatography, the structure of the most active component was analyzed by nuclear magnetic resonance spectroscopy (NMR), the BFW control effect was tested by pot experiments. We obtained a strain JSHA-CD-1003 with antagonistic activity against FocTR4, and the inhibition rate from plate confrontation was 60.6%. The fermentation broth of JSHA-CD-1003 completely inhibited the germination of FocTR4 conidia within 24 hours. The inhibition rate of FocTR4 hyphae growth was 52.6% within 7 d. A phylogenetic tree was constructed based on the ITS and tef1-α gene tandem sequences, and JSHA-CD-1003 was identified as Trichoderma brevicompactum. Purification and NMR identification showed that the single active compound was trichodermin, and the minimum inhibitory concentration (MIC) was 25 μg/mL. Pot experiments showed that the fermentation broth of strain JSHA-CD-1003 was effective against BFW. The control rate of leaf yellowing was 47.4%, and the rate of bulb browning was 52.0%. Therefore, JSHA-CD-1003 effectively inhibited FocTR4 conidial germination and mycelium growth through producing trichodermin, and showed biocontrol effect on banana wilt caused by FocTR4, thus is a potential biocontrol strain.
Fusarium
;
Musa
;
Phylogeny
;
Trichodermin
;
Hypocreales
5.Identification and expression analysis of TCP family members in tobacco (Nicotiana tabacum L.).
Shize WANG ; Yun LI ; Yucui HAN ; Shizhou YU ; Shuang WANG ; Yong LIU ; Xiaohu LIN
Chinese Journal of Biotechnology 2024;40(1):226-238
TCP family as plant specific transcription factor, plays an important role in different aspects of plant development. In order to screen TCP family members in tobacco, the homologous sequences of tobacco and Arabidopsis TCP family were identified by genome-wide homologous alignment. The physicochemical properties, phylogenetic relationships and cis-acting elements were analyzed by bioinformatics. The homologous genes of AtTCP3/AtTCP4 were screened, and RT-qPCR was used to detect the changes of gene expression upon 20% PEG6000 treatment. The results show that tobacco contains 63 TCP family members. Their amino acid sequence length ranged from 89 aa to 596 aa, and their protein hydropathicity grand average of hydropathicity (GRAVY) ranged from -1.147 to 0.125. The isoelectric point (pI) ranges from 4.42 to 9.94, the number of introns is 0 to 3, and the subcellular location is all located in the nucleus. The results of conserved domain and phylogenetic relationship analysis showed that the tobacco TCP family can be divided into PCF, CIN and CYC/TB1 subfamilies, and each subfamily has a stable sequence. The results of cis-acting elements in gene promoter region showed that TCP family genes contain low docile acting elements (LTR) and a variety of stress and metabolic regulation related elements (MYB, MYC). Analysis of gene expression patterns showed that AtTCP3/AtTCP4 homologous genes (NtTCP6, NtTCP28, NtTCP30, NtTCP33, NtTCP42, NtTCP57, NtTCP63) accounted for 20% PEG6000 treatment significantly up-regulated/down-regulated expression, and NtTCP30 and NtTCP57 genes were selected as candidate genes in response to drought. The results of this study analyzed the TCP family in the tobacco genome and provided candidate genes for the study of drought-resistance gene function and variety breeding in tobacco.
Nicotiana/genetics*
;
Phylogeny
;
Plant Breeding
;
Amino Acid Sequence
;
Arabidopsis
;
Polyethylene Glycols
6.Characteristics of the chloroplast genome of Camellia insularis.
Jin ZHANG ; Yongbiao DENG ; Bo ZHAO
Chinese Journal of Biotechnology 2024;40(1):280-291
In this study, the chloroplast genome of Camellia insularis Orel & Curry was sequenced using high-throughput sequencing technology. The results showed that the chloroplast genome of C. insularis was 156 882 bp in length with a typical tetrad structure, encoding 132 genes, including 88 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Codon preference analysis revealed that the highest number of codons coded for leucine, with a high A/U preference in the third codon position. Additionally, 67 simple sequence repeats (SSR) loci were identified, with a preference for A and T bases. The inverted repeat (IR) boundary regions of the chloroplast genome of C. insularis were relatively conserved, except for a few variable regions. Phylogenetic analysis indicated that C. insularis was most closely related to C. fascicularis. Yellow camellia is a valuable material for genetic engineering breeding. This study provides fundamental genetic information on chloroplast engineering and offers valuable resources for conducting in-depth research on the evolution, species identification, and genomic breeding of yellow Camellia.
Genome, Chloroplast/genetics*
;
Phylogeny
;
Plant Breeding
;
Camellia/genetics*
;
Chloroplasts/genetics*
7.Molecular epidemiological study on rubella virus circulating in Yunnan Province during 2011-2021.
Li Qun LI ; Jiang Rong LI ; Wen YU ; Jie ZHANG ; Li Fang HE ; Qiong Yu GONG ; Rong Rong ZHOU ; Zhen ZHU
Chinese Journal of Preventive Medicine 2023;57(8):1194-1198
Objective: To understand the genotype distribution and transmission pattern of rubella virus (RuV) circulating in Yunnan Province. Methods: Throat swab samples were collected from rubella outbreaks and sporadic cases in nine prefectures/cities of Yunnan Province from 2011 to 2021. Virus isolation, amplification of target genes and sequence determination were performed on the RuV-positive samples. The genotypes and lineages of Yunnan strains were determined by comparing them with the reference strains, and further phylogenetic analysis was performed with Yunnan strains and strains circulating in other provinces of China during the same period. Results: RuV circulating in Yunnan province during 2011-2021 showed significant genetic diversity, and three lineages, 1E-L1, 2B-L1 and 1E-L2, were detected. Two lineage-switches were also identified, including the conversion of 1E-L1 to 2B-L1 between 2012 and 2013, and the replacement of 2B-L1 to 1E-L2 after 2018. The time of the switches was basically consistent with the outbreak in Yunnan province in 2012 and the time of the rubella reemergence and epidemic between 2018 and 2019. The amino acid sequence of RuV virus strains in Yunnan province was highly conserved, and no important functional regions were changed. Conclusions: The transmission pattern of RuV in Yunnan province is generally consistent with the epidemic trend of RuV in other provinces of China.
Humans
;
Rubella virus/genetics*
;
Phylogeny
;
China/epidemiology*
;
Rubella/epidemiology*
;
Genotype
8.Genetic characteristics of the first human infection with the G4 genotype eurasian avian-like H1N1 swine influenza virus in Shaanxi Province,China.
Long QIN ; Jun Jun ZHANG ; Bin CHEN ; Shi Feng WANG ; Peng Bo YU
Chinese Journal of Preventive Medicine 2023;57(9):1434-1439
Objective: To analyze the genetic characteristics of the first human infection with the G4 genotype of Eurasian avian H1N1 swine influenza virus (EA H1N1 SIV) in Shaanxi Province. Methods: The patient's throat swab samples were collected, and MDCK cells were inoculated for virus isolation to obtain the virus strain. The whole genome deep sequencing method was used to obtain the eight gene segments of the isolated strain. The nucleotide homology analysis was conducted through the Blast program in the GenBank database, and a phylogenetic tree was constructed to analyze the genetic characteristics of the virus. Results: The throat swab specimens of the case were confirmed as EA H1N1 SIV in the laboratory, and the isolated strain was named A/Shaanxi-Weicheng/1351/2022(H1N1v). Homology analysis found that the PB2, NP, HA, NA, and M genes of this isolate had the highest nucleotide homology with A/swing/Beijing/0301/2018 (H1N1), about 98.29%, 98.73%, 97.41%, 97.52%, and 99.08%, respectively. The phylogenetic tree showed that the isolate belonged to G4 genotype EA H1N1 SIV, with PB2, PB1, PA, NP and M genes from pdm/09 H1N1, HA and NA genes from EA H1N1, and NS gene from Triple-reassortant H1N1. The cleavage site of the HA protein was IPSIQSR↓G, which was the molecular characteristic of the low pathogenic influenza virus. No amino acid mutations associated with neuraminidase inhibitors were found in the NA protein. PB2 protein 701N mutation, PA protein P224S mutation, NP protein Q357K mutation, M protein P41A mutation, and NS protein 92D all indicated its enhanced adaptability to mammals. Conclusion: The patient is the first human infection with G4 genotype EA H1N1 SIV in Shaanxi province. The virus is low pathogenic, but its adaptability to mammals is enhanced. Therefore, it is necessary to strengthen the monitoring of such SIVs.
Swine
;
Humans
;
Animals
;
Influenza A Virus, H1N1 Subtype/genetics*
;
Phylogeny
;
Genotype
;
Influenza A virus
;
China
;
Birds
;
Mammals
9.Genome sequence analysis of two SARS-CoV-2 virus infections in Inner Mongolia, 2022.
Guo Qing YANG ; Chao MIN ; Jian SONG ; Xiao Feng JIANG ; Hua YUE ; Xiao Wei NAN ; Zhen YAN ; Ai Tao LU ; Yan HAI ; Zhan Song ZHU
Chinese Journal of Preventive Medicine 2023;57(10):1630-1634
The target gene sequences of the novel coronaviruses obtained by sequencing were compared with the reference sequences to analyze the genetic variation of the two cases of the novel coronaviruses from Inner Mongolia Autonomous Region in 2022 and to explore the sources of infection. The results showed that the two sequences belonged to different evolutionary branches, Delta (AY.122) and Omicron (BA.1.1), respectively. hCoV-19/Inner Mongolia/IVDC-591/2022 had 48 single nucleotide polymorphisms on the genome sequences, sharing 40 nucleotide mutation sites with a Mongolian strain; hCoV-19/Inner Mongolia/IVDC-592/2022 genome shared 57 nucleotide mutation sites with a UK strain, and the nucleotide mutation site identity was 100% (57/57). Phylogenetic analysis showed that the target gene sequences were not directly related to domestic novel coronavirus sequences during the same period, but were related to isolates from Europe and Mongolia.
Humans
;
COVID-19
;
SARS-CoV-2/genetics*
;
Phylogeny
;
Genome, Viral
;
Nucleotides
;
Sequence Analysis
10.Molecular epidemiological study on rubella virus circulating in Yunnan Province during 2011-2021.
Li Qun LI ; Jiang Rong LI ; Wen YU ; Jie ZHANG ; Li Fang HE ; Qiong Yu GONG ; Rong Rong ZHOU ; Zhen ZHU
Chinese Journal of Preventive Medicine 2023;57(8):1194-1198
Objective: To understand the genotype distribution and transmission pattern of rubella virus (RuV) circulating in Yunnan Province. Methods: Throat swab samples were collected from rubella outbreaks and sporadic cases in nine prefectures/cities of Yunnan Province from 2011 to 2021. Virus isolation, amplification of target genes and sequence determination were performed on the RuV-positive samples. The genotypes and lineages of Yunnan strains were determined by comparing them with the reference strains, and further phylogenetic analysis was performed with Yunnan strains and strains circulating in other provinces of China during the same period. Results: RuV circulating in Yunnan province during 2011-2021 showed significant genetic diversity, and three lineages, 1E-L1, 2B-L1 and 1E-L2, were detected. Two lineage-switches were also identified, including the conversion of 1E-L1 to 2B-L1 between 2012 and 2013, and the replacement of 2B-L1 to 1E-L2 after 2018. The time of the switches was basically consistent with the outbreak in Yunnan province in 2012 and the time of the rubella reemergence and epidemic between 2018 and 2019. The amino acid sequence of RuV virus strains in Yunnan province was highly conserved, and no important functional regions were changed. Conclusions: The transmission pattern of RuV in Yunnan province is generally consistent with the epidemic trend of RuV in other provinces of China.
Humans
;
Rubella virus/genetics*
;
Phylogeny
;
China/epidemiology*
;
Rubella/epidemiology*
;
Genotype

Result Analysis
Print
Save
E-mail