1.Splicing mutations of GSDME cause late-onset non-syndromic hearing loss.
Danyang LI ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):30-37
Objective:To dentify the genetic and audiological characteristics of families affected by late-onset hearing loss due to GSDMEgene mutations, aiming to explore clinical characteristics and pathogenic mechanisms for providing genetic counseling and intervention guidance. Methods:Six families with late-onset hearing loss from the Chinese Deafness Genome Project were included. Audiological tests, including pure-tone audiometry, acoustic immittance, speech recognition scores, auditory brainstem response, and distortion product otoacoustic emission, were applied to evaluate the hearing levels of patients. Combining with medical history and physical examination to analyze the phenotypic differences between the probands and their family members. Next-generation sequencing was used to identify pathogenic genes in probands, and validations were performed on their relatives by Sanger sequencing. Pathogenicity analysis was performed according to the American College of Medical Genetics and Genomics Guidelines. Meanwhile, the pathogenic mechanisms of GSDME-related hearing loss were explored combining with domestic and international research progress. Results:Among the six families with late-onset hearing loss, a total of 30 individuals performed hearing loss. The onset of hearing loss in these families ranged from 10 to 50 years(mean age: 27.88±9.74 years). In the study, four splicing mutations of the GSDME were identified, including two novel variants: c. 991-7C>G and c. 1183+1G>T. Significantly, the c. 991-7C>G was a de novo variant. The others were previously reported variants: c. 991-1G>C and c. 991-15_991-13del, the latter was identified in three families. Genotype-phenotype correlation analysis revealed that probands with the c. 991-7C>G and c. 1183+1G>T performed a predominantly high-frequency hearing loss. The three families carrying the same mutation exhibited varying degrees of hearing loss, with an annual rate of hearing deterioration exceeding 0.94 dB HL/year. Furthermore, follow-up of interventions showed that four of six probands received intervention(66.67%), but the results of intervention varied. Conclusion:The study analyzed six families with late-onset non-syndromic hearing loss linked to GSDME mutations, identifying four splicing variants. Notably, c. 991-7C>G is the first reported de novo variant of GSDME globally. Audiological analysis revealed that the age of onset generally exceeded 10 years,with variable effectiveness of interventions.
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Child
;
Hearing Loss, Sensorineural/diagnosis*
;
Deafness/genetics*
;
Mutation
;
Hearing Loss/genetics*
;
Pedigree
2.Genetic and phenotypic analysis of MYO15A rare variants associated with autosomal recessive hearing loss.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):38-43
Objective:To analyze the phenotype and genotype characteristics of autosomal recessive hearing loss caused by MYO15A gene variants, and to provide genetic diagnosis and genetic counseling for patients and their families. Methods:Identification of MYO15A gene variants by next generation sequencing in two sporadic cases of hearing loss at Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. The sequence variants were verified by Sanger sequencing.The pathogenicity of these variants was determined according to the American College of Medical Genetics and Genomics(ACMG) variant classification guidelines, in conjuction with clinical data. Results:The probands of the two families have bilateral,severe or complete hearing loss.Four variants of MYO15A were identified, including one pathogenic variant that has been reported, two likely pathogenic variants,and one splicing variant of uncertain significance. Patient I carries c. 3524dupA(p. Ser1176Valfs*14), a reported pathogenic variant, and a splicing variant c. 10082+3G>A of uncertain significance according to the ACMG guidelines. Patient I was treated with bilateral hearing aids with satisfactory effect, demonstrated average hearing thresholds of 37.5 dB in the right ear and 33.75 dB in the left ear. Patient Ⅱ carries c. 7441_7442del(p. Leu2481Glufs*86) and c. 10250_10252del(p. Ser3417del),a pair of as likely pathogenic variants according to the ACMG guidelines. Patient Ⅱ, who underwent right cochlear implantation eight years ago, achieved scores of 9 on the Categorical Auditory Performance-Ⅱ(CAP-Ⅱ) and 5 on the Speech Intelligibility Rating(SIR). Conclusion:This study's discovery of the rare c. 7441_7442del variant and the splicing variant c. 10082+3G>A in the MYO15A gene is closely associated with autosomal recessive hearing loss, expanding the MYO15A variant spectrum. Additionally, the pathogenicity assessment of the splicing variant facilitates classification of splicing variations.
Humans
;
Pedigree
;
China
;
Deafness/genetics*
;
Hearing Loss/genetics*
;
Phenotype
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Myosins/genetics*
4.Phenotype and genotype analyses of two pedigrees with inherited fibrinogen deficiency.
Kai Qi JIA ; Zheng Xian SU ; Hui Lin CHEN ; Xiao Yong ZHENG ; Man Lin ZENG ; Ke ZHANG ; Long Ying YE ; Li hong YANG ; Yan Hui JIN ; Ming Shan WANG
Chinese Journal of Hematology 2023;44(11):930-935
Objective: To analyze the phenotype and genotype of two pedigrees with inherited fibrinogen (Fg) deficiency caused by two heterozygous mutations. We also preliminarily probed the molecular pathogenesis. Methods: The prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and plasma fibrinogen activity (Fg∶C) of all family members (nine people across three generations and three people across two generations) were measured by the clotting method. Fibrinogen antigen (Fg:Ag) was measured by immunoturbidimetry. Direct DNA sequencing was performed to analyze all exons, flanking sequences, and mutated sites of FGA, FGB, and FGG for all members. Thrombin-catalyzed fibrinogen polymerization was performed. ClustalX 2.1 software was used to analyze the conservatism of the mutated sites. MutationTaster, PolyPhen-2, PROVEAN, SIFT, and LRT online bioinformatics software were applied to predict pathogenicity. Swiss PDB Viewer 4.0.1 was used to analyze the changes in protein spatial structure and molecular forces before and after mutation. Results: The Fg∶C of two probands decreased (1.28 g/L and 0.98 g/L, respectively). The Fg∶Ag of proband 1 was in the normal range of 2.20 g/L, while it was decreased to 1.01 g/L in proband 2. Through genetic analysis, we identified a heterozygous missense mutation (c.293C>A; p.BβAla98Asp) in exon 2 of proband 1 and a heterozygous nonsense mutation (c.1418C>G; p.BβSer473*) in exon 8 of proband 2. The conservatism analysis revealed that Ala98 and Ser473 presented different conservative states among homologous species. Online bioinformatics software predicted that p.BβAla98Asp and p.BβSer473* were pathogenic. Protein models demonstrated that the p.BβAla98Asp mutation influenced hydrogen bonds between amino acids, and the p.BβSer473* mutation resulted in protein truncation. Conclusion: The dysfibrinogenemia of proband 1 and the hypofibrinogenemia of proband 2 appeared to be related to the p.BβAla98Asp heterozygous missense mutation and the p.BβSer473* heterozygous nonsense mutation, respectively. This is the first ever report of these mutations.
Humans
;
Afibrinogenemia/genetics*
;
Codon, Nonsense
;
Pedigree
;
Phenotype
;
Fibrinogen/genetics*
;
Genotype
5.Non-muscle myosin heavy chain 9 gene-related disorders with thrombocytopenia: report of two pedigrees and literature review.
Shu Ting MAO ; Bai LI ; Dao WANG ; Shan Shan LIU ; Shu Fang SU ; Lin Lin WEI ; Fang Yuan CHAI ; Ying LIU ; Yu Feng LIU
Chinese Journal of Pediatrics 2023;61(9):833-838
Objective: To summarize the clinical characteristics and gene variants of 2 pedigrees of non-muscle myosin heavy chain 9 related diseases (MYH9-RD) in children. Methods: The basic information, clinical features, gene variants and laboratory tests of MYH9-RD patients from 2 pedigrees confirmed in the First Affiliated Hospital of Zhengzhou University in November 2021 and July 2022 were analyzed retrospectively. "Non-muscle myosin heavy chain 9 related disease" "MYH9" and "children" were used as key words to search at Pubmed database, CNKI and Wanfang database up to February 2023. The MYH9-RD gene variant spectrum and clinical data were analyzed and summarized. Results: Proband 1 (male, 11 years old) sought medical attention due to epistaxis, the eldest sister and second sister of proband 1 only showed excessive menstrual bleeding, the skin and mucous membrane of the their mother were prone to ecchymosis after bumping, the uncle of proband 1 had kidney damage, and the maternal grandmother and maternal great-grandmother of proband 1 had a history of cataracts. There were 7 cases of phenotypic abnormalities in this pedigree. High-throughput sequencing showed that the proband 1 MYH9 gene had c.279C>G (p.N93K) missense variant, and family verification analysis showed that the variant was inherited from the mother. A total of 4 patients including proband 1 and family members were diagnosed with MYH9-RD. The proband 2 (female, 1 year old) sought medical attention duo to fever and cough, and the father's physical examination revealed thrombocytopenia. There were 2 cases of phenotypic abnormalities in this pedigree. High-throughput sequencing showed that there was a c.4270G>A (p.D1424N) missense variant in the proband 2 MYH9 gene, and family verification analysis showed that the variant was inherited from the father. A total of 2 patients including proband 2 and his father were diagnosed with MYH9-RD. A total of 99 articles were retrieved, including 32 domestic literatures and 67 foreign literatures. The MYH9-RD cases totaled 149 pedigrees and 197 sporadic patients, including 2 pedigrees in our study. There were 101 cases with complete clinical data, including 62 sporadic cases and 39 pedigrees. There were 56 males and 45 females, with an average age of 6.9 years old. The main clinical manifestations were thrombocytopenia, skin ecchymosis, and epistaxis. Most patients didn't receive special treatment after diagnosis. Six English literatures related to MYH9-RD caused by c.279C>G mutation in MYH9 gene were retrieved. Italy reported the highest number of cases (3 cases). Twelve literatures related to MYH9-RD caused by c.4270G>A mutation in MYH9 gene were retrieved. China reported the highest number of cases (9 cases). Conclusions: The clinical manifestations of patients in the MYH9-RD pedigrees varied greatly. MYH9 gene c.279C>G and c.4270G>A mutations are the cause of MYH9-RD.
Infant
;
Humans
;
Female
;
Male
;
Child
;
Myosin Heavy Chains/genetics*
;
Ecchymosis
;
Epistaxis
;
Pedigree
;
Retrospective Studies
;
Muscular Diseases
;
Thrombocytopenia
;
Cytoskeletal Proteins
7.Clinical phenotype and genetic analysis of patients with left ventricular noncompaction caused by the biallelic mutation of MYBPC3 and MYH7.
Ya Hui ZHANG ; Xiao Yan LI ; Bang Rong SONG ; Yue Li WANG ; Jun Rui ZHANG ; Yan Long REN
Chinese Journal of Cardiology 2023;51(11):1160-1165
Objective: To explore the relationship between pathogenic gene, mutation and phenotype of left ventricular noncompaction (LVNC) patients and their family members. Methods: The subjects were the proband with LVNC and her family members. The medical history including electrocardiogram, echocardiography and cardiac magnetic resonance examination of the proband and family members were collected. Whole exome sequencing of the proband was performed, bioinformatics analysis focused on the genes related to hereditary cardiomyopathy. Candidate pathogenic sites were validated by Sanger sequencing. The clinical interpretation of sequence variants were classified according to American College of Medical Genetics and Genomics (ACMG) guidelines. Results: The proband carried a heterozygous variation of the MYBPC3 gene c.C2827T and the MYH7 gene c.G2221C. The proband's sister carried heterozygous variation of MYBPC3 gene c.C2827T. According to the ACMG guidelines, the variant was determined to be pathogenic. Conclusion: The missense variant of MYBPC3 gene c.C2827T and MYH7 gene c.G2221C are identified from the proband with LVNC and her family member, which provides a genetic basis for clinical diagnosis and genetic counseling of the patients and the family members with LVNC.
Female
;
Humans
;
Cardiac Myosins/genetics*
;
Heart Defects, Congenital
;
Mutation
;
Mutation, Missense
;
Myosin Heavy Chains/genetics*
;
Pedigree
;
Phenotype
8.PROSI Mutation With Clinical Heterogeneity in Protein S Deficiency:Report of One Case.
Xin-Yu WEI ; Juan WANG ; Bang-Yun TAN ; Zi-Jian LI
Acta Academiae Medicinae Sinicae 2023;45(5):863-866
Reduced protein S activity is one of the high-risk factors for venous thromboembolism.Hereditary protein S deficiency is an autosomal dominant disorder caused by mutations in the PROS1 gene.We reported a female patient with a mutation of c.292 G>T in exon 3 of the PROS1 gene,which was identified by sequencing.The genealogical analysis revealed that the mutation probably originated from the patient's mother.After searching against the PROS1 gene mutation database and the relevant literature,we confirmed that this mutation was reported for the first time internationally.
Humans
;
Female
;
Protein S/genetics*
;
Protein S Deficiency/genetics*
;
Pedigree
;
Mutation
9.Genetic analysis of a Chinese pedigree with Cohen syndrome due to compound heterozygous variants of VPS13B gene.
Wenyu ZHANG ; Na QI ; Liangjie GUO ; Hongdan WANG ; Yue GAO ; Qiaofang HOU ; Guiyu LOU
Chinese Journal of Medical Genetics 2023;40(8):966-972
OBJECTIVE:
To investigate the clinical phenotype and genetic characteristics of a Chinese pedigree affected with Cohen syndrome.
METHODS:
A proband who was admitted to Zhengzhou People's Hospital on June 2, 2021 due to intellectual disability and developmental delay, in addition with her younger sister and other family members, were selected as the study subjects. Clinical data of the proband and her younger sister were collected. Genomic DNA was extracted from peripheral venous blood and chorionic villi samples. Chromosomal abnormalities were detected with chromosomal microarray analysis (CMA). Whole exome sequencing (WES) and Sanger sequencing were carried out to detect candidate variants in the proband. With RNA extracted from the peripheral blood samples, VPS13B gene transcripts and expression were analyzed by PCR and real-time quantitative PCR. Prenatal diagnosis was carried out at 12 weeks' gestation.
RESULTS:
The proband was a 10-year-old female with clinical manifestations including development delay, obesity, severe myopia and peculiar facial features. Her sister was 3 years old with a similar phenotype. CMA revealed no chromosomal abnormality in the proband, while WES results revealed that the proband and her sister had both harbored compound heterozygous variants of the VPS13B gene, namely c.10076_10077delCA (p.T3359fs*29) and c.6940+1G>T, which were respectively inherited from their mother and father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were classified as pathogenic (PVS1+PS4+PM4+PP1; PVS1+PM2_Supporting+PM3+PP1). In vivo splicing assay confirmed that the c.6940+1G>T variant has produced a frameshift transcript with skipping of exon 38. Compared with the control group, the expression of RNA in the peripheral blood of the proband's parents has decreased to 65% ~ 70% (P < 0.01), whilst that in the proband and her sister has decreased to 40% (P < 0.001). Prenatal diagnosis at 12 weeks of gestation has found that the fetus only harbored the heterozygous c.10076_ 10077delCA variant.
CONCLUSION
The c.10076_10077delCA (p.T3359fs*29) frameshift variant and c.6940+1G>T splicing variant probably underlay the Cohen syndrome in this pedigree. Genetic testing has facilitated the diagnosis of this disease.
Female
;
Humans
;
East Asian People
;
Intellectual Disability/genetics*
;
Mutation
;
Myopia/genetics*
;
Pedigree
;
Vesicular Transport Proteins/genetics*
;
Child, Preschool
;
Child
10.Genetic analysis of a Chinese pedigree with chronic kidney disease due to variant of PAX2 gene.
Jianglei MA ; Huijie ZHANG ; Guangming WANG
Chinese Journal of Medical Genetics 2023;40(8):973-978
OBJECTIVE:
To explore the genetic basis of a Chinese pedigree affected with chronic kidney disease (CKD).
METHODS:
A Chinese pedigree comprised of 10 individuals from four generation who had visited the First Affiliated Hospital of Dali University from August 15, 2018 to July 5, 2021 was selected as the study subject. Clinical data of the proband were collected, and a pedigree survey was conducted. The proband was subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
The proband, a 41-year-old female, has been diagnosed with chronic nephritis for more than 4 years. Routine urinary examination showed proteinuria and blood creatinine of 1 130 μmol/L. Renal biopsy has revealed hyperplastic glomerulonephritis, moderate tubulointerstitial disease and renal arteriosclerosis. Her elder sister, younger brother, younger sister and mother were all diagnosed with CKD stage 5. Except for her elder sister, all of them had deceased, whilst no abnormality was found in the remainders. Genetic testing revealed that the proband and four family members had harbored a c.467G>A missense variant of the PAX2 gene. The variant has been associated with focal segmental glomerulosclerosis and classified as likely pathogenic (PS1+PP3+PP4) based on the guidelines from the American College of Medical Genetics and Genomics (ACMG).
CONCLUSION
The c.167G>A variant of the PAX2 gene probably underlay the CKD in this Chinese pedigree.
Adult
;
Female
;
Humans
;
Male
;
East Asian People
;
Genetic Testing
;
Mutation
;
PAX2 Transcription Factor/genetics*
;
Pedigree
;
Renal Insufficiency, Chronic/genetics*

Result Analysis
Print
Save
E-mail