1.Asperuloside Promotes Apoptosis of Cervical Cancer Cells through Endoplasmic Reticulum Stress-Mitochondrial Pathway.
Zhi-Min QI ; Xia WANG ; Xia LIU ; Juan ZHAO
Chinese journal of integrative medicine 2024;30(1):34-41
OBJECTIVE:
To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.
METHODS:
Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.
RESULTS:
Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).
CONCLUSION
Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.
Female
;
Humans
;
Uterine Cervical Neoplasms/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
HeLa Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Endoplasmic Reticulum Stress
;
Cell Line, Tumor
2.Fangji Fuling Decoction Alleviates Sepsis by Blocking MAPK14/FOXO3A Signaling Pathway.
Yi WANG ; Ming-Qi CHEN ; Lin-Feng DAI ; Hai-Dong ZHANG ; Xing WANG
Chinese journal of integrative medicine 2024;30(3):230-242
OBJECTIVE:
To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.
METHODS:
A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.
RESULTS:
FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).
CONCLUSION
FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
Mice
;
Animals
;
Mitogen-Activated Protein Kinase 14/metabolism*
;
Wolfiporia
;
Lipopolysaccharides/pharmacology*
;
Sepsis/complications*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Oxygen Radioisotopes
3.Discovery of proqodine A derivatives with antitumor activity targeting NAD(P)H: quinone oxidoreductase 1 and nicotinamide phosphoribosyltransferase.
Jiangzhou SONG ; Guiqing ZOU ; Zhou ZHAO ; Ya ZHU ; Jiayu XUE ; Lanjia AO ; Huiyong SUN ; Haiping HAO ; Bo ZHANG ; Xiaowei XU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):75-88
NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.
Humans
;
NAD/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Nicotinamide Phosphoribosyltransferase/metabolism*
;
Cytokines/metabolism*
;
Quinones
;
Oxidoreductases
4.Effect of acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) on the expression of apoptosis-related factors in rats with premature ovarian insufficiency based on oxidative stress.
Jing YAN ; Ji-Yu ZHAO ; Lu-Yun YIN ; Xiao-Qin YAN ; Xiao-Fei JIN
Chinese Acupuncture & Moxibustion 2023;43(4):454-460
OBJECTIVE:
To explore the possible mechanism of acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) on premature ovarian insufficiency (POI) from the perspective of oxidative stress.
METHODS:
Sixty female SD rats were randomly divided into a blank group, a model group, a sham acupuncture group, a medication group, and an acupuncture group, 12 rats in each group. Except the blank group, the rats in the remaining groups were intraperitoneally injected with cyclophosphamide to establish the POI model. After the model was successfully established, the rats in the acupuncture group were treated with acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28), with a depth of about 12 mm, and the needle was retained for 30 min; the acupuncture was given once a day, for a total of 4 weeks. The rats in the sham acupuncture group were treated with blunt-head needle to tap the skin surface of "Zhibian" (BL 54), without penetrating the skin, once a day for 4 weeks. The rats in the medication group were treated with estradiol valerate by gastric gavage for 4 weeks. After the intervention, the level of reactive oxygen species (ROS) in the ovarian tissue was detected by fluorescence probe; the expression of c-Jun N-terminal kinase (JNK), forkhead box O1 (FoxO1), tumor suppressor gene protein 53 (p53) and p53 up-regulated modulator of apoptosis (Puma) mRNA and protein in ovarian tissue were detected by real-time fluorescence quantitative PCR and Western blot.
RESULTS:
Compared with the blank group, the level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the model group were increased (P<0.01). Compared with the model group, the level of ROS and the expression of p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the sham acupuncture group were slightly reduced, but the difference was not statistically significant (P>0.05). The level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the acupuncture group and the medication group were reduced (P<0.01).
CONCLUSION
Acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) could improve the level of oxidative stress, down-regulate the expression of apoptosis-related factors JNK, FoxO1, p53 and Puma induced by oxidative stress, and inhibit the premature failure of ovarian reserve function caused by apoptosis of ovarian granulosa cells in POI rats.
Humans
;
Rats
;
Female
;
Animals
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
Tumor Suppressor Protein p53/genetics*
;
Apoptosis Regulatory Proteins
;
Acupuncture Therapy
;
Primary Ovarian Insufficiency/therapy*
;
Apoptosis
;
RNA, Messenger
;
Oxidative Stress
;
Acupuncture Points
5.Nuclear factor-Y mediates pancreatic β-cell compensation by repressing reactive oxygen species-induced apoptosis under metabolic stress.
Siyuan HE ; Xiaoqian YU ; Daxin CUI ; Yin LIU ; Shanshan YANG ; Hongmei ZHANG ; Wanxin HU ; Zhiguang SU
Chinese Medical Journal 2023;136(8):922-932
BACKGROUND:
Pancreatic β-cells elevate insulin production and secretion through a compensatory mechanism to override insulin resistance under metabolic stress conditions. Deficits in β-cell compensatory capacity result in hyperglycemia and type 2 diabetes (T2D). However, the mechanism in the regulation of β-cell compensative capacity remains elusive. Nuclear factor-Y (NF-Y) is critical for pancreatic islets' homeostasis under physiological conditions, but its role in β-cell compensatory response to insulin resistance in obesity is unclear.
METHODS:
In this study, using obese ( ob/ob ) mice with an absence of NF-Y subunit A (NF-YA) in β-cells ( ob , Nf-ya βKO) as well as rat insulinoma cell line (INS1)-based models, we determined whether NF-Y-mediated apoptosis makes an essential contribution to β-cell compensation upon metabolic stress.
RESULTS:
Obese animals had markedly augmented NF-Y expression in pancreatic islets. Deletion of β-cell Nf-ya in obese mice worsened glucose intolerance and resulted in β-cell dysfunction, which was attributable to augmented β-cell apoptosis and reactive oxygen species (ROS). Furthermore, primary pancreatic islets from Nf-ya βKO mice were sensitive to palmitate-induced β-cell apoptosis due to mitochondrial impairment and the attenuated antioxidant response, which resulted in the aggravation of phosphorylated c-Jun N-terminal kinase (JNK) and cleaved caspase-3. These detrimental effects were completely relieved by ROS scavenger. Ultimately, forced overexpression of NF-Y in INS1 β-cell line could rescue palmitate-induced β-cell apoptosis, dysfunction, and mitochondrial impairment.
CONCLUSION
Pancreatic NF-Y might be an essential regulator of β-cell compensation under metabolic stress.
Rats
;
Mice
;
Animals
;
Reactive Oxygen Species/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Insulin Resistance
;
Insulin
;
Insulin-Secreting Cells/metabolism*
;
Apoptosis
;
Stress, Physiological
;
Transcription Factors/metabolism*
;
Palmitates/pharmacology*
;
Obesity/metabolism*
7.Synergistic effect of β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli in vitro.
Muchen ZHANG ; Huangwei SONG ; Zhiyu ZOU ; Siyuan YANG ; Hui LI ; Chongshan DAI ; Dejun LIU ; Bing SHAO ; Congming WU ; Jianzhong SHEN ; Yang WANG
Chinese Journal of Biotechnology 2023;39(4):1621-1632
The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.
Humans
;
Tigecycline/pharmacology*
;
Escherichia coli/metabolism*
;
Reactive Oxygen Species/therapeutic use*
;
Plasmids
;
Anti-Bacterial Agents/metabolism*
;
Escherichia coli Infections/microbiology*
;
Bacteria/genetics*
;
Microbial Sensitivity Tests
8.Blueberry attenuates liver injury in metabolic dysfunction-associated liver disease by promoting the expression of mitofilin/Mic60 in human hepatocytes and inhibiting the production of superoxide.
Ya REN ; Houmin FAN ; Lili ZHU ; Tao LIN ; Tingting REN
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):318-324
Objective To study the effect and mechanism of blueberry on regulating the mitochondrial inner membrane protein mitofilin/Mic60 in an in vitro model of metabolic dysfunction-associated liver disease (MAFLD). Methods L02 human hepatocytes were induced by free fatty acids (FFA) to establish MAFLD cell model. A normal group, a model group, an 80 μg/mL blueberry treatment group, a Mic60 short hairpin RNA (Mic60 shRNA) transfection group, and Mic60 knockdown combined with an 80 μg/mL blueberry treatment group were established. The intracellular lipid deposition was observed by oil red O staining, and the effect of different concentrations of blueberry pulp on the survival rate of L02 cells treated with FFA was measured by MTT assay. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were measured by visible spectrophotometry. The expression of reactive oxygen species (ROS) in hepatocytes was observed by fluorescence microscopy, and the mRNA and protein expression of Mic60 were detected by real-time quantitative PCR and Western blot analysis, respectively. Results After 24 hours of FFA stimulation, a large number of red lipid droplets in the cytoplasm of L02 cells was observed, and the survival rate of L02 cells treated with 80 μg/mL blueberry was higher. The results of ALT, AST, TG, TC, MDA and the fluorescence intensity of ROS in blueberry treated group were lower than those in model group, while the levels of SOD, GSH, Mic60 mRNA and protein in blueberry treated group were higher than those in model group. Conclusion Blueberry promotes the expression of Mic60, increases the levels of SOD and GSH in hepatocytes, and reduces the production of ROS, thus alleviating the injury of MAFLD hepatocytes and regulating the disorder of lipid metabolism.
Humans
;
Blueberry Plants/chemistry*
;
Hepatocytes/metabolism*
;
Liver/metabolism*
;
Liver Diseases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/metabolism*
;
Mitochondrial Membranes/metabolism*
;
Mitochondrial Proteins/metabolism*
;
Plant Extracts/pharmacology*
9.Research progress on the relationship between low-density neutrophils and infectious diseases.
Jiayu LI ; Ye ZHANG ; Linxu WANG ; Changxing HUANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):371-375
Neutrophils play an important role in infectious diseases by clearing pathogens in the early stages of the disease and damaging the surrounding tissues along with the disease progress. Low-density neutrophils (LDNs) are a crucial and distinct subpopulation of neutrophils. They are a mixture of activated and degranulated normal mature neutrophils and a considerable number of immature neutrophils prematurely released from the bone marrow. Additionally, they may be involved in the occurrence and development of diseases through the changes in phagocytosis, the generation of reactive oxygen species (ROS), the enhancement of the ability to produce neutrophils extracellular traps and immunosuppression. We summarizes the role of LDNs in the pathogenesis and their correlation with the severity of infectious diseases such as COVID-19, severe fever with thrombocytopenia syndrome (SFTS), AIDS, and tuberculosis.
Humans
;
Neutrophils
;
COVID-19/pathology*
;
Phagocytosis
;
Extracellular Traps
;
Communicable Diseases
;
Reactive Oxygen Species
10.Oxidative stress induces autophagy to inhibit the proliferation and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs).
Zhijun LIU ; Shaojin LIU ; Weipeng ZHENG ; Hewei WEI ; Zhihao LIAO ; Sheng CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):626-632
Objective To investigate the effect of H2O2-induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were isolated and cultured. The cells were divided into control group, 3-MA group, H2O2 group, H2O2 combined with 3-MA group. DCFH-DA staining was used to analyze the level of reactive oxygen species (ROS). hBMSCs were treated with 0, 50, 100, 200, 400 μmol/L H2O2, and then the cell viability was detected by CCK-8 assay. The level of autophagy was detected by monodansylcadaverine (MDC) staining and LysoTracker Red staining. The cell apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of beclin 1, mTOR, phosphorylated mTOR (p-mTOR), cleaved caspase-3(c-caspase-3) and caspase-3 proteins. Results Compared with the control group and 3-MA group, ROS level and autophagosomes were increased and the proliferation and apoptosis were decreased in H2O2 group. The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, while the p-mTOR was down-regulated. Compared with the 3-MA group, the H2O2 combined with 3-MA group also had an increased ROS level and autophagosomes, but not with significantly increased apoptosis rate; The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, and the p-mTOR was down-regulated. Conclusion H2O2 can induce hMSCs to trigger oxidative stress response. It enhances the autophagy and inhibits the proliferation and apoptosis of hBMSCs.
Humans
;
Beclin-1/metabolism*
;
Caspase 3/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Hydrogen Peroxide/pharmacology*
;
Apoptosis
;
TOR Serine-Threonine Kinases/metabolism*
;
Oxidative Stress
;
Autophagy
;
Mesenchymal Stem Cells/metabolism*
;
Cell Proliferation

Result Analysis
Print
Save
E-mail