1.Genomic variant surveillance of SARS-CoV-2 positive specimens using a direct PCR product sequencing surveillance (DPPSS) method
Nicole Ann L. Tuberon ; Francisco M. Heralde III ; Catherine C. Reportoso ; Arturo L. Gaitano III ; Wilmar Jun O. Elopre ; Kim Claudette J. Fernandez
Acta Medica Philippina 2025;59(Early Access 2025):1-12
BACKGROUND AND OBJECTIVE
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of COVID-19 has significantly challenged the public health landscape in late 2019. After almost 3 years of the first ever SARS-CoV-2 case, the World Health Organization (WHO) declared the end of this global health emergency in May 2023. Although, despite the subsequent drop of COVID-19 cases, the SARS-CoV-2 infection still exhibited multiple waves of infection, primarily attributed to the appearance of new variants. Five of these variants have been classified as Variants of Concern (VOC): Alpha, Beta, Gamma, Delta, and the most recent, Omicron. Therefore, the development of methods for the timely and accurate detection of viral variants remains fundamental, ensuring an ongoing and effective response to the disease. This study aims to evaluate the feasibility of the application of an in-house approach in genomic surveillance for the detection of SARS-CoV-2 variants using in silico designed primers.
METHODSThe primers used for the study were particularly designed based on conserved regions of certain genes in the virus, targeting distinct mutations found in known variants of SARS-CoV-2. Viral RNA extracts from nasopharyngeal samples (n=14) were subjected to quantitative and qualitative tests (Nanodrop and AGE). Selected samples were then analyzed by RT-PCR and amplicons were submitted for sequencing. Sequence alignment analysis was carried out to identify the prevailing COVID-19 variant present in the sample population.
RESULTSThe study findings demonstrated that the in-house method was able to successfully amplify conserved sequences (spike, envelope, membrane, ORF1ab) and enabled identification of the circulating SARS-CoV-2 variant among the samples. Majority of the samples were identified as Omicron variant. Three out of four designed primers effectively bound into the conserved sequence of target genes present in the sample, revealing the specific SARSCoV-2 variant. The detected mutations characterized for Omicron found in the identified lineages included K417N, S477N, and P681H which were also identified as mutations of interest. Furthermore, identification of the B.1.448 lineage which was not classified in any known variant also provided the potential of the developed in-house method in detecting unknown variants of COVID-19.
CONCLUSIONAmong the five VOCs, Omicron is the most prevalent and dominant variant. The in-house direct PCR product sequencing surveillance (DPPSS) method provided an alternative platform for SAR-CoV-2 variant analysis which is accessible and affordable than the conventional diagnostic surveillance methods and the whole genome sequencing. Further evaluation and improvements on the oligonucleotide primers may offer significant contribution to the development of a specific and direct PCRbased detection of new emerging COVID-19 variants.
Sars-cov-2 ; Polymerase Chain Reaction ; Dna Primers ; Oligonucleotide Primers
2.Coptidis Rhizoma-Scutellariae Radix alleviates CpG1826-induced cytokine storm secondary lung injury in mice by inhibiting mPTP/NLRP3 pyroptosis pathway.
Qing-Rui ZHONG ; Hong-Kai HUANG ; Yue-Jia LAN ; Huan WANG ; Yong ZENG ; Jia-Si WU
China Journal of Chinese Materia Medica 2025;50(15):4141-4152
This study aims to investigate the therapeutic effects of the Coptidis Rhizoma-Scutellariae Radix on cytokine storm secondary lung injury(CSSLI) induced by CpG1826 in mice, and to elucidate the potential molecular mechanisms by which its major active components, i.e., coptisine and wogonin, alleviate CSSLI by inhibiting the mitochondrial permeability transition pore(mPTP)/nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome pyroptosis pathway. In vivo, a mouse model of CSSLI was established by CpG1826 induction. Pulmonary edema was assessed by lung wet-to-dry weight ratio(W/D), lung injury was evaluated by hematoxylin-eosin(HE) staining, and ultrastructural changes in lung tissue were observed by transmission electron microscopy(TEM). The levels of interleukin(IL)-1β, high mobility group box 1 protein(HMGB1), IL-18, and IL-1α in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay(ELISA). The results showed that the decoction of the Coptidis Rhizoma-Scutellariae Radix significantly reduced pulmonary edema, alleviated lung injury, and decreased the concentrations of related cytokines in BALF more effectively than either single herb alone, thereby improving CSSLI. In vitro, a CpG1826-induced CSSLI model was established in mouse alveolar macrophage MH-S cells. Calcein-AM quenching was used to screen for the most effective monomer components from the herb pair in inhibiting mPTP opening. Coptisine(5, 10, 20 μmol·L~(-1)) and wogonin(10, 20, 40 μmol·L~(-1)) markedly inhibited mPTP opening, with optimal effects and a clear dose-dependent pattern. These components suppressed mPTP opening, thereby reducing the release of mitochondrial DNA(mtDNA) and the accumulation of reactive oxygen species(ROS), effectively reversing the CpG1826-induced decrease in mitochondrial membrane potential(MMP). Further studies revealed that both coptisine and wogonin inhibited pyroptosis and downregulated the expression of key proteins in the NLRP3/Caspase-1/gasdermin D(GSDMD) pathway. In conclusion, the Coptidis Rhizoma-Scutellariae Radix improves CpG1826-induced CSSLI in mice, and this effect is associated with the inhibition of the mPTP/NLRP3 pyroptosis pathway, providing scientific evidence for its clinical application and further development.
Animals
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Male
;
Lung Injury/immunology*
;
Cytokines/immunology*
;
Scutellaria baicalensis/chemistry*
;
Oligodeoxyribonucleotides/adverse effects*
;
Mice, Inbred C57BL
;
Coptis chinensis
3.Immunogenicity Evaluation of a SARS-CoV-2 BA.2 Subunit Vaccine Formulated with CpG 1826 plus alum Dual Adjuvant.
Yuhan YAN ; Qiudong SU ; Yao YI ; Liping SHEN ; Shengli BI
Biomedical and Environmental Sciences 2024;37(12):1409-1420
OBJECTIVE:
The present study aimed to evaluate the immunogenicity of BA.2 variant receptor binding domain (RBD) recombinant protein formulated with CpG 1826 plus alum dual adjuvant.
METHODS:
The BA.2 variant RBD (residues 308-548) fusing TT-P 2 epitope was obtained from prokaryotic expression system, purification technology and dialysis renaturation, which was designated as Sot protein. The soluble Sot protein formulated with CpG 1826 plus alum dual adjuvant was designated as Sot/CA subunit vaccine and then the BALB/c mice were intramuscularly administrated with two doses of the Sot/CA subunit vaccine at 14-day interval (day 0 and 14). On day 28, the number of effector T lymphocytes secreting IFN-γ and IL-4 in mice spleen were determined by enzyme-linked immunospot (ELISpot) assay. The serum IgG, IgG1 and IgG2a antibodies were examined by enzyme-linked immunosorbent assay (ELISA). In addition, the level of neutralizing antibodies (NAbs) induced by Sot/CA subunit vaccine was also evaluated by the microneutralization assay.
RESULTS:
The high-purity soluble Sot protein with antigenicity was successfully obtained by the prokaryotic expression, protein purification and dialysis renaturation. The Sot/CA subunit vaccine induced a high level of IgG antibodies and NAbs, which were of cross-neutralizing activity against SARS-CoV-2 BA.2 and XBB.1.5 variants. Meanwhile, Sot/CA subunit vaccine also induced a high level of effector T lymphocytes secreting IFN-γ (635.00 ± 17.62) and IL-4 (279.20 ± 13.10), respectively. Combined with a decreased IgG1/IgG2a ratio in the serum, which indicating Sot/CA subunit vaccine induced a Th1-type predominant immune response.
CONCLUSION
The Sot protein formulated with CpG 1826 plus alum dual adjuvant showed that the excellent cellular and humoral immunogenicity, which provided a scientific basis for the development of BA.2 variant subunit vaccines and references for the adjuvant application of subunit vaccines.
Animals
;
COVID-19 Vaccines/immunology*
;
Alum Compounds/pharmacology*
;
Mice, Inbred BALB C
;
Vaccines, Subunit/immunology*
;
Mice
;
SARS-CoV-2/immunology*
;
Oligodeoxyribonucleotides/administration & dosage*
;
Female
;
Adjuvants, Immunologic
;
COVID-19/immunology*
;
Antibodies, Viral/blood*
;
Immunogenicity, Vaccine
;
Spike Glycoprotein, Coronavirus/immunology*
;
Antibodies, Neutralizing/blood*
;
Adjuvants, Vaccine
;
Immunoglobulin G/blood*
4.The application of PCR-SSP with the serology in identification and genotyping of ABO ambiguous blood group.
Yanyan SONG ; Yuxi ZHANG ; Xinrui CAO ; Xiaonan YU ; Wei ZHENG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):824-827
Objective To investigate the effect of blood group serology and polymerase chain reaction with sequence-specific primers (PCR-SSP) on identification and genotyping of ambiguous ABO blood group. Methods Eighty suspicious ABO blood group samples were identified by serology and polymerase chain reaction with sequence-specific primers (PCR-SSP). The final blood group type and the strategy of the transfusion of each case were determined according to the results of serology and PCR-SSP. Results 40 cases were confirmed to be subtypes, and the remaining 40 cases were normal types with weakened antigens or missing antibodies due to other reasons. The results of molecular genetic blood group typing based on PCR-SSP were 41 cases of subtypes (There were 3 discrepancies between two methods: one was Ael identified by serological methods, while its gene type was O2O2; one was common type O, while its gene type was BO1; one was type A, while its gene type was AB.) and 39 cases of normal ones. Conclusion Genotyping technology combined with serological typing has an important significance in identification of ABO blood groups.
ABO Blood-Group System/genetics*
;
Genotype
;
Polymerase Chain Reaction
;
Antibodies
;
DNA Primers
5.DNA methylation diversity analysis of Lycium barbarum samples from different cultivation areas based on MSAP.
Fang ZHANG ; You-Yuan LU ; Er-Xin SHANG ; Sheng GUO ; Xue-Jun LU ; Gang REN ; Zhan-Ping CHEN ; Yu-Ling ZHAO ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2022;47(2):392-402
Obvious epigenetic differentiation occurred on Lycium barbarum in different cultivation areas in China. To investigate the difference and change rule of DNA methylation level and pattern of L. barbarum from different cultivation areas in China, the present study employed fluorescence-assisted methylation-sensitive amplified polymorphism(MSAP) to analyze the methylation level and polymorphism of 53 genomic DNA samples from Yinchuan Plain in Ningxia, Bayannur city in Inner Mongolia, Jingyuan county and Yumen city in Gansu, Delingha city in Qinghai, and Jinghe county in Xinjiang. The MSAP technical system suitable for the methylation analysis of L. barbarum genomic DNA was established and ten pairs of selective primers were selected. Among amplified 5'-CCGG-3' methylated sites, there were 35.85% full-methylated sites and 39.88% hemi-methylated sites, showing a high degree of epigenetic differentiation. Stoichiometric analysis showed that the ecological environment was the main factor affecting the epigenetic characteristics of L. barbarum, followed by cultivated varieties. Precipitation, air temperature, and soil pH were the main ecological factors affecting DNA methylation in different areas. This study provided a theoretical basis for the analysis of the epigenetic mechanism of L. barbarum to adapt to the diffe-rent ecological environments and research ideas for the introduction, cultivation, and germplasm traceability of L. barbarum.
China
;
DNA Methylation
;
DNA Primers
;
Epigenesis, Genetic
;
Lycium/genetics*
6.Targeting GATA1 and p2x7r Locus Binding in Spinal Astrocytes Suppresses Chronic Visceral Pain by Promoting DNA Demethylation.
Yan-Yan WU ; Hai-Long ZHANG ; Xiaomin LU ; Han DU ; Yong-Chang LI ; Ping-An ZHANG ; Guang-Yin XU
Neuroscience Bulletin 2022;38(4):359-372
Irritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1-TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.
Animals
;
Astrocytes/metabolism*
;
DNA Demethylation
;
Epigenesis, Genetic
;
GATA1 Transcription Factor/metabolism*
;
Inflammation/metabolism*
;
Oligodeoxyribonucleotides/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Purinergic P2X7/metabolism*
;
Visceral Pain/metabolism*
7.Identification of Andrographis Herba and its common products using mini-barcode.
Chao XIONG ; Chen-Hao HUANG ; Lan WU ; Ran XU ; Jian-Ping XUE ; Zhi-Guo LIU ; Wei SUN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(5):393-400
Andrographis Herba, the aerial part of Andrographis paniculata (Burm. f.) Wall. ex Nees (Acanthaceae), has a wide geographic distribution and has been used for the treatment of fever, cold, inflammation, and other infectious diseases. In markets, sellers and buyers commonly inadvertently confuse with related species. In addition, most Chinese medicinal herbs are subjected to traditional processing procedures, such as steaming and boiling, before they are sold at dispensaries; therefore, it is very difficult to identify Andrographis Herba when it is processed into Chinese medicines. The identification of species and processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA barcoding has received considerable attention as a new potential means to identify species and processed medicinal materials. In this study, 17 standard reference materials of A. paniculata, 2 standard decoctions, 27 commercial products and two adulterants were collected. Based on the ITS2 sequence, it could successfully identify A. paniculata and adulterants. Moreover, a nucleotide signature consisting of 71 bp was designed, this sequence is highly conserved and specific within A. paniculata while divergent among other species. Then, we used these new primers to amplify the nucleotide signature region from processed materials. In conclusion, the DNA barcoding method developed in the present study for authenticating A. paniculata is rapid and cost-effective. It can be used in the future to guarantee the quality of Andrographis Herba of each regulatory link for clinical use.
Andrographis
;
Andrographis paniculata
;
DNA Primers
;
Drugs, Chinese Herbal
8.A multiplex PCR-based sensitive and specific method for detecting Y chromosome material in patients with Turner syndrome.
Qiang ZHAO ; Shuxiong CHEN ; Hailin SUN ; Wanling YANG ; Bo BAN
Chinese Journal of Medical Genetics 2022;39(11):1216-1223
OBJECTIVE:
To develop a multiplex PCR method for a rapid detection of Y chromosome-specific sequences in patients with Turner syndrome.
METHODS:
Nine genes were selected from various regions of the Y chromosome for designing the primers, which included SRY, TBL1Y, TSPY on the short arm of the Y chromosome, DDX3Y, HSFY1, RPS4Y2 and CDY1 on the long arm of Y chromosome and SHOX in the short arm and SPRY3 in the long arm of the pseudoautosomal region (PAR) of X and Y chromosomes. A multiplex PCR method for the nine genes in Y chromosome was established and optimized. The sensitivity was tested by using different amounts of genomic DNA. A total of 36 patients with Turner syndrome and a patient with male dwarfism with karyotype of 46, X, +mar were examined by the multiplex PCR method for the existence of materials from the Y chromosome.
RESULTS:
The optimization results of the multiplex PCR reaction system (50 μL) showed that when the final concentration of upstream and downstream of each pair of primers was 0.1 μM, the multiplex PCR reaction of the 9 pairs of primers clearly amplified the target with the expected band size, and there was no non-specific amplification. The bands were clearly visible when the amount of genomic DNA in the multiple PCR reaction system was as low as 1 ng. By using the method, we have examined the 36 patients with Turner syndrome. One patient with Turner syndrome with karyotype of 45,X[40]/47XYY[21] amplified specific seven genes on Y chromosome, 35 patients with Turner syndrome amplified only two target genes SHOX and SPRY3, but not the other seven specific genes on the Y chromosome, which was in keeping with the clinical manifestations of such patients.
CONCLUSION
This study established a multiplex PCR reaction system with nine genes, which can quickly and accurately screen Y chromosome materials in patients with Turner syndrome. It has the advantages of low cost, simple operation, high specificity and rapid turn-around time, and can be used to detect Turner syndrome patients with Y chromosome material in time. The method has provided a diagnostic basis for preventive gonad resection to prevent malignant gonadal tumors.
Humans
;
Male
;
Turner Syndrome/genetics*
;
Multiplex Polymerase Chain Reaction
;
Y Chromosome
;
Karyotyping
;
DNA Primers
;
DNA
;
Chromosomes, Human, Y/genetics*
;
Transducin/genetics*
;
Minor Histocompatibility Antigens
;
DEAD-box RNA Helicases/genetics*
9.Establishment of Multiplex Amplification System of STR Loci in Felis Catus and Its Forensic Application.
Shi-Han XI ; Yi-Ling QU ; Ruo-Cheng XIA ; Lei XIONG ; Si-Yu CHAI ; Chun-Lan TONG ; Rui-Yang TAO ; Cheng-Tao LI
Journal of Forensic Medicine 2022;38(2):231-238
OBJECTIVES:
To construct a Felis catus STR loci multiplex amplification system and to evaluate its application value by testing the technical performance.
METHODS:
The published Felis catus STR loci data were reviewed and analyzed to select the STR loci and sex identification loci that could be used for Felis catus individual identification and genetic identification. The fluorescent labeling primers were designed to construct the multiplex amplification system. The system was validated for sensitivity, accuracy, balance, stability, species specificity, tissue identity and mixture analysis, and investigated the genetic polymorphisms in 145 unrelated Felis catus samples.
RESULTS:
Sixteen Felis catus autosomal STR loci and one sex determining region of Y (SRY) were successfully selected, and constructed a multiplex amplification system containing the above loci. The complete profile of all alleles could still be obtained when the amount of DNA template was as low as 0.25 ng. There was no specific amplification peak in other common animal samples. Population genetic surveys showed that total discrimination power (TDP) of the 16 STR loci was 1-3.57×10-20, the cumulative probability of exclusion (CPE) was 1-6.35×10-5 and the cumulative probability of matching was 3.61×10-20.
CONCLUSIONS
The Felis catus STR multiplex amplification system constructed in this study is highly sensitive, species-specific, and accurate in typing results, which can provide an effective solution for Felis catus species identification, individual identification and kinship identification in the field of forensic science.
Alleles
;
Animals
;
Cats/genetics*
;
Chromosomes, Human, Y
;
DNA Fingerprinting/methods*
;
DNA Primers
;
Humans
;
Microsatellite Repeats/genetics*
;
Polymerase Chain Reaction/methods*
;
Polymorphism, Genetic
10.Optimized inverse PCR strategy for constructing multilocus mutants efficiently.
Bilin XU ; Qing ZHU ; Yanyan CHEN ; Yongliang ZHENG
Chinese Journal of Biotechnology 2020;36(4):801-809
Mutants of proteins are the basis for studying their structure and function, this work aimed to establish an efficient and rapid method for constructing multi-site mutants. When four or more adjacent amino acid residues need to be mutated, firstly, two long and two short primers (long primers Ⅰ/Ⅰ, short primersⅡ/Ⅱ) were designed: the long primers contain mutated sites, and the number of mutant bases is ≤20 bp, the short primers do not contain mutated sites; GC contents of the long and short primers are ≤80%, and the difference of annealing temperature is ≤40 °C. Then two sets of reverse PCR amplifications were performed using primer pairs (Ⅰ/Ⅱand Ⅰ/Ⅱ) and templates, respectively. After amplification, each system can obtain non-methylated linear plasmids which contain mutated sites, and the breakpoints of the two sets of linear plasmids amplified by primers Ⅰ/Ⅱ and Ⅲ/Ⅳ were distributed on both sides of the mutated sites. Followed by digested by DpnⅠ to remove the methylated templates, the recovered PCR products, which were mixed in an equimolar ratio, were performed another round of denaturation and annealing: the two sets of linear plasmids were denatured at 95 °C and then annealed with each other's single-stranded DNA as templates to form open-loop plasmids, and then the transformants containing the mutations will be obtained after transformed the open-loop plasmids into Escherichia coli competent cells. Results showed that, this method can mutate 4 to 11 consecutive amino acid residues (8-20 bp) simultaneously, which will greatly simplify the construction of multi-site mutants, Thereby improve the efficiency of protein structure and function research further.
DNA Primers
;
genetics
;
Escherichia coli
;
Mutagenesis, Site-Directed
;
methods
;
Plasmids
;
genetics
;
Polymerase Chain Reaction


Result Analysis
Print
Save
E-mail