1.Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability.
Bob T ROSIER ; William JOHNSTON ; Miguel CARDA-DIÉGUEZ ; Annabel SIMPSON ; Elena CABELLO-YEVES ; Krystyna PIELA ; Robert REILLY ; Alejandro ARTACHO ; Chris EASTON ; Mia BURLEIGH ; Shauna CULSHAW ; Alex MIRA
International Journal of Oral Science 2024;16(1):1-1
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P < 0.05 in all five datasets with n = 20-82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.
Humans
;
Nitrates
;
Nitric Oxide
;
Nitrites
;
RNA, Ribosomal, 16S/genetics*
;
Periodontitis/microbiology*
;
Bacteria
;
Dental Plaque/microbiology*
;
Saliva/microbiology*
;
Microbiota/genetics*
2.Suicide by sodium nitrite ingestion: An autopsy case report
May Vell Mañ ; ibo ; Raquel del Rosario-Fortun
Philippine Journal of Pathology 2024;9(2):61-64
Sodium nitrite (SN, NaNO2) is a water-soluble, white-yellow crystalline powder with broad applications in food preservation, automotive maintenance, and animal control. It is a strong oxidizing agent that can oxidize hemoglobin iron (Fe) to its oxidized state, leading to methemoglobin formation. An increasing trend of suicide cases by SN ingestion has been reported globally following its popularization in online suicide forums providing detailed instructions of its use solely or as part of a “suicide kit.” We report a case of a 21-year-old male who was found continuously vomiting, with blood per orem and cyanosis of the mouth and digits. Within minutes of the onset of symptoms, the patient lost consciousness and was pronounced dead on arrival at the nearest emergency room. Autopsy findings showed lip erosions, hemorrhage, and perioral and peripheral cyanosis. Internal examination showed characteristic bright red muscle discoloration, dark brown arterial blood, red-brown congested visceral organs, and hyperemic esophageal and gastric mucosa. Methemoglobin studies from sampled arterial blood showed elevated levels (17.5%). Further investigation of the decedent’s belongings, social media posts, and recent online purchases reinforced the intentional sodium nitrite ingestion. While there are plenty of reported SN poisoning in suicide cases internationally, limited reports have been published locally. Death by SN poisoning is preventable with Methylene blue. The role of forensic pathologists through autopsy may be the last chance to detect such cases. The lack of systemic death investigation, experts, and local laboratories to reliably detect the signs of SN poisoning may have affected the low detection rate of cases locally. Further reporting of cases can raise the awareness of medical professionals that is fundamental to the ultimate saving of lives.
Human ; Male ; Young Adult: 19-24 Yrs Old ; Sodium Nitrite ; Suicide ; Poisoning ; Forensic Pathology ; Autopsy
3.Homeostatic medicine: new strategy and concept of health maintenance as well as diagnosis and treatment of diseases.
Li Zheng QIN ; Jian ZHOU ; Lei HU ; Song Ling WANG
Chinese Journal of Stomatology 2023;58(2):109-117
Homeostasis is a dynamic balance process of self-regulating. Biological systems remain stable through adapting to changing external conditions to maintain normal life activities. Homeostatic medicine is the science of studying homeostasis of human molecules, cells, organs and the whole body. It is a comprehensive discipline based on maintaining homeostasis to keep human health and assist for diseases prevention and diagnoses. Homeostatic medicine focuses on the whole body and on the role of homeostasis in health and disease, which is expected to provide new ideas and strategies for maintaining health as well as diagnosing and treating diseases. Nitric oxide (NO) plays an important role in the control of multisystem homeostasis. Nitrate is an important substance in regulating NO homeostasis through the nitrate-nitrite-NO pathway. Sialin, nitrate transporter which is located in the cell membrane and cytoplasm, mediates multiple cellular biological functions. The nitrate-nitrite-NO pathway and sialin-mediated biological functions play an important role in the regulation of body homeostasis.
Humans
;
Nitrates/metabolism*
;
Nitrites/metabolism*
;
Homeostasis
;
Nitric Oxide
4.Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells.
Cheng-Liu YANG ; Shi-Bo WANG ; Wen-Ping HE ; Jin-Juan LIU
Chinese journal of integrative medicine 2023;29(10):905-913
OBJECTIVE:
To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages.
METHODS:
RAW264.7 cells were pretreated with 0-200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2-) radical and nitrite scavenging activity were also measured.
RESULTS:
The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1β and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2- radical and nitrite scavenging activity.
CONCLUSION
EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.
Animals
;
Mice
;
Antioxidants/pharmacology*
;
Lipopolysaccharides/pharmacology*
;
Polygala
;
Transcription Factor RelA/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/metabolism*
;
Anti-Inflammatory Agents/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Nitrites/metabolism*
;
NF-kappa B/metabolism*
;
Nitric Oxide/metabolism*
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger
;
Nitric Oxide Synthase Type II/metabolism*
5.The effects of different herbal compound and extracts from different extraction methods on hypoxia tolerance in mice.
Wan-Yu LI ; Hui-Ping MA ; Qu-Huan MA ; Xiao-Feng SHI ; Yan-Mei LU ; Peng-Peng ZHANG ; Jia-Xu ZHANG ; Xue-Feng DONG ; Qian-Nju YE
Chinese Journal of Applied Physiology 2022;38(3):199-204
Objective: To investigate the effects of different prescription compositions of traditional Chinese medicine and its different extraction methods of compound formula extracts on hypoxia tolerance in mice, in order to preferably select their prescription compositions and preparation extraction methods. Methods: Male BALB/c mice were randomly divided into 6 groups: blank control group, compound danshen group, compound Rhodiola Rosea alcohol-water extract group (Rhodiola rosea, Astragali Radix, Polygonati Rhizoma, Lycii Fructus), compound Rhodiola Rosea water extract group, compound Astragalus alcohol-water extract group (Astragali Radix, Polygonati Rhizoma, Lycii Fructus) and compound Astragalus water extract group, 30 mice in each group. Each group was administered continuously by gavage for 10 d. The blank group was gavaged with sterilized injection water. The mice in the other groups were treated with 0.15 g/kg of compound danshen, 3 g/kg of compound Rhodiola Rosea alcohol-water extract or water extract, and 1.7 g/kg of compound Astragalus alcohol-water extract or water extract, respectively. Each group was subjected to normobaric hypoxia tolerance test, sodium nitrite toxicity survival test and acute cerebral ischemia-hypoxia test 1 h after the last gavage, and the mice brain tissues were used to determine the activity of antioxidant enzymes and metabolites related to oxidative stress. Results: Compared with the blank control group, in normobaric hypoxia tolerance test, the survival time of mice in the compound danshen group and the compound Astragalus alcohol-water extract group and water extraction group was prolonged significantly (P<0.01), and the number of open-mouth gasping after cerebral ischemia and hypoxia was increased significantly (P<0.05). There was no statistical difference in survival time after sodium nitrite injection in each group. Compared with the blank control group, the activities of T-AOC, SOD, GSH and CAT were increased significantly (P<0.05, P<0.01) and the content of MDA was decreased significantly (P<0.01) in the compound Astragalus water extract group. Compared with the compound danshen group, the activities of SOD, CAT and GSH were increased significantly (P<0.01, P<0.05) and the content of MDA was decreased significantly (P<0.05). Conclusion: Compound Astragalus water extraction has the best effect of hypoxia tolerance, compound Rhodiola Rosea can eliminate Rhodiola rosea and consists of Astragali Radix, Polygonati Rhizoma, Lycii Fructus and its extraction method is water extraction.
Animals
;
Astragalus Plant
;
Ethanol
;
Hypoxia
;
Male
;
Mice
;
Plant Extracts/pharmacology*
;
Rhodiola
;
Sodium Nitrite
;
Superoxide Dismutase/metabolism*
;
Water
6.Advances in heterotrophic nitrification-aerobic denitrifying bacteria for nitrogen removal under extreme conditions.
Jianhua YUAN ; Tiantao ZHAO ; Xuya PENG
Chinese Journal of Biotechnology 2019;35(6):942-955
Heterotrophic nitrification-aerobic denitrification (HN-AD) is an enrichment and breakthrough theory of traditional autotrophic nitrification heterotrophic denitrification. Heterotrophic nitrification-aerobic denitrifiers with the feature of wide distribution, strong adaptability and unique metabolic mechanism have many special advantages, including fast-growing, rapid biodegradability and long lasting activity, which can rapidly remove ammonia nitrogen, nitrate nitrogen (NO₃⁻-N) and nitrite nitrogen (NO₂⁻-N) under aerobic conditions simultaneously. Therefore, HN-AD bacteria show the important potential for denitrification under extreme conditions with high-salt, low-temperature or high-ammonia nitrogen environment, and HN-AD bacteria attract extensive attention in the field of biological denitrification of wastewater. In this review, we first introduce the previously reported HN-AD bacterial species which have denitrification performance in the extreme environments and state their typical metabolic mechanism. Then, we systematically analyze the nitrogen removal characteristics and potential under extreme conditions. We also briefly describe the progress in the application of HN-AD bacterial. Finally, we outlook the application prospects and research directions of HN-AD denitrification technology.
Aerobiosis
;
Bacteria
;
Denitrification
;
Heterotrophic Processes
;
Nitrification
;
Nitrites
;
Nitrogen
7.Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes.
Xiang HU ; Dominika SOBOTKA ; Krzysztof CZERWIONKA ; Qi ZHOU ; Li XIE ; Jacek MAKINIA
Journal of Zhejiang University. Science. B 2018;19(4):305-316
The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process biomass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS·h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher denitrification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS·h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS·h)) for both anoxic electron acceptors (nitrate and nitrite).
Biomass
;
Bioreactors
;
Carbon/chemistry*
;
Denitrification
;
Electrons
;
Nitrates
;
Nitrites
;
Oxygen
;
Phosphates
;
Phosphorus/chemistry*
;
Sewage
;
Waste Disposal, Fluid/methods*
;
Wastewater
;
Water Pollutants, Chemical
;
Water Purification/methods*
8.Sodium nitrite enhanced the potentials of migration and invasion of human hepatocellular carcinoma SMMC-7721 cells through induction of mitophagy.
Guan GUI ; Shan-shan MENG ; Lu-juan LI ; Bin LIU ; Hong-xia LIANG ; Chao-shen HUANGFU
Acta Pharmaceutica Sinica 2016;51(1):59-67
Nitrites play multiple characteristic functions in invasion and metastasis of hepatic cancer cells, but the exact mechanism is not yet known. Cancer cells can maintain the malignant characteristics via clearance of excess mitochondria by mitophagy. The purpose of this article was to determine the roles of nitrite, reactive oxygen species (ROS) and hypoxia inducing factor 1 alpha (HIF-1 α) in mitophagy of hepatic cancer cells. After exposure of human hepatocellular carcinoma SMMC-7721 cells to a serial concentrations of sodium nitrite for 24 h under normal oxygen, the maximal cell vitality was increased by 16 mg x (-1) sodium nitrite. In addition, the potentials of migration and invasion for SMMC-7721 cells were increased significantly at the same time. Furthermore, sodium nitrite exposure displayed an increase of stress fibers, lamellipodum and perinuclear mitochondrial distribution by cell staining with Actin-Tracker Green and Mito-Tracker Red, which was reversed by N-acetylcysteine (NAC, a reactive oxygen scavenger). DCFH-DA staining with fluorescent microscopy showed that the intracellular level of ROS concentration was increased by the sodium nitrite treatment. LC3 immunostaining and Western blot results showed that sodium nitrite enhanced cell autophagy flux. Under the transmission electron microscopy (TEM), more autolysosomes formed after sodium nitrite treatment and NAC could prevent autophagosome degradation. RT-PCR results indicated that the expression levels of COX I and COXIV mRNA were decreased significantly after sodium nitrite treatment. Meanwhile, laser scanning confocal microscopy showed that sodium nitrite significantly reduced mitochondrial mass detected by Mito-Tracker Green staining. The expression levels of HIF-1α, Beclin-1 and Bnip3 (mitophagy marker molecular) increased remarkably after sodium nitrite treatment, which were reversed by NAC. Our results demonstrated that sodium nitrite (16 mg x L(-1)) increased the potentials of invasion and migration of hepatic cancer SMMC-7721 cells through induction of ROS and HIF-1α mediated mitophagy.
Acetylcysteine
;
pharmacology
;
Autophagy
;
Carcinoma, Hepatocellular
;
pathology
;
Cell Line, Tumor
;
Cell Movement
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Liver Neoplasms
;
pathology
;
Mitochondrial Degradation
;
Neoplasm Invasiveness
;
Nitrites
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Sodium Nitrite
;
pharmacology
9.Effect of sodium nitrite on phosphorylation of cytoskeletal proteins and spatial learning and memory in rats.
Zhi-Hong HU ; Ling-Ling FAN ; Yong-Mei HU
Acta Physiologica Sinica 2015;67(5):479-486
The present study was aimed to explore the effect of sodium nitrite on cytoskeletal protein phosphorylation and spatial learning and memory in rats. Rats were served with drinking water containing sodium nitrite (100 mg/kg) for 60 days, then, the ability of spatial learning and memory of the rats was measured by Morris water maze. Phosphorylation level of tau and neurofilament, and the expression of protein phosphatase 2A (PP2A) catalytic subunit in the hippocampus were detected by immunohistochemistry and Western blot. In comparison with the rats served with normal tap water, the rats served with sodium nitrite water showed significantly longer latency to find the hidden platform in Morris water maze (P < 0.05), elevated phosphorylation level of tau and neurofilament, and decreased expression of PP2A catalytic subunit (P < 0.05). These results indicated that administration of sodium nitrite could impair the spatial learning and memory of the rats, and the hyperphosphorylation of cytoskeletal proteins and the down-regulation of PP2A might be underlying mechanisms for the impairment.
Animals
;
Cytoskeletal Proteins
;
metabolism
;
Down-Regulation
;
Hippocampus
;
metabolism
;
Maze Learning
;
Memory
;
drug effects
;
Neurofilament Proteins
;
metabolism
;
Phosphorylation
;
Protein Phosphatase 2
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Nitrite
;
pharmacology
;
Spatial Learning
;
drug effects
;
tau Proteins
;
metabolism
10.Sodium nitrite reduces lipid accumulation in steatotic cells by enhancing autophagy.
You-jing ZHANG ; Nai-rui ZHENG ; Bin LIU ; Ai-ling JI ; Yan-zhang LI ; Chao-shen HUANGFU
Acta Pharmaceutica Sinica 2015;50(8):1000-1007
Recent data have revealed that inhibiting autophagy exacerbates lipid accumulation in hepatocytes and nitrite treatment reduces total triglyceride levels in the high-fat diet mice. Therefore, the present study aimed to determine the effects of nitrite on simple hepatic steatosis and the possible role of autophagy. Firstly, steatotic L-02 cells were induced by incubating L-02 cells with 1.2 mmol · L(-1) oleic acid (OA) for 24 h. Secondly, steatotic L-02 cells were treated with 0.2 mmol · L(-1) sodium nitrite (SN) plus 3-methyladenine (3-MA), or chloroquine (CQ) for 24 h, and then lipid accumulation was measured with oil red O staining and triglyceride quantification. The notable steatosis could be observed in L-02 cells following exposure to 1.2 mmol · L(-1) OA for 24 h. Treatment with 0.2 mmol · L(-1) sodium nitrite reduced lipid accumulation in steatotic L-02 cells. 3-MA weakened the ability of sodium nitrite to ameliorate hepatic steatosis. Additionally, the sodium nitrite increased number of LC3-II immunostaining puncta and LC3-II protein expression was confirmed by immunofluorescence or Western blot analysis, and the effects were enhanced by CQ treatment. The number of increased cytoplasm vacuoles and lysosomes increased was confirmed by phase contrast and fluorescence microscope respectively. The increased autolysosome was detected by electron microscopy, this phenomenon could be reversed by CQ treatment. These data demonstrated that sodium nitrite enhanced the autophagic flux and decomposition of triglycerides in steatotic L-02 cells.
Adenine
;
analogs & derivatives
;
Autophagy
;
Blotting, Western
;
Cells, Cultured
;
Chloroquine
;
Cytoplasm
;
Fatty Liver
;
Hepatocytes
;
drug effects
;
Humans
;
Lipid Metabolism
;
drug effects
;
Microscopy, Fluorescence
;
Microtubule-Associated Proteins
;
metabolism
;
Oleic Acid
;
Sodium Nitrite
;
pharmacology
;
Triglycerides


Result Analysis
Print
Save
E-mail