1.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
2.Mechanism of Jiming Powder in improving mitophagy for treatment of myocardial infarction based on PINK1-Parkin pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(12):3346-3355
In the present study, a mouse model of coronary artery ligation was employed to evaluate the effects of Jiming Powder on mitophagy in the mouse model of myocardial infarction and elucidate its underlying mechanisms. A mouse model of myocardial infarction post heart failure was constructed by ligating the left anterior descending branch of the coronary artery. The therapeutic efficacy of Jiming Powder was assessed from multiple perspectives, including ultrasonographic imaging, hematoxylin-eosin(HE) staining, Masson staining, and serum cardiac enzyme profiling. Dihydroethidium(DHE) staining was employed to evaluate the oxidative stress levels in the hearts of mice from each group. Mitophagy levels were assessed by scanning electron microscopy and immunofluorescence co-localization. Western blot was employed to determine the levels of key proteins involved in mitophagy, including Bcl-2-interacting protein beclin 1(BECN1), sequestosome 1(SQSTM1), microtubule-associated protein 1 light chain 3 beta(LC3B), PTEN-induced putative kinase 1(PINK1), phospho-Parkinson disease protein(p-Parkin), and Parkinson disease protein(Parkin). The results demonstrated that compared with the model group, high and low doses of Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd) and markedly improved the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improving the cardiac function in post-myocardial infarction mice. Jiming Powder effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactate dehydrogenase(LDH), thereby protecting ischemic myocardium. HE staining revealed that Jiming Powder attenuated inflammatory cell infiltration after myocardial infarction. Masson staining indicated that Jiming Powder effectively inhibited ventricular remodeling. Western blot results showed that Jiming Powder activated the PINK1-Parkin pathway, up-regulated the protein level of BECN1, down-regulated the protein level of SQSTM1, and increased the LC3Ⅱ/LC3Ⅰ ratio to promote mitophagy. In conclusion, Jiming Powder exerts therapeutic effects on myocardial infarction by inhibiting ventricular remodeling. The findings pave the way for subsequent pharmacological studies on the active components of Jiming Powder.
Animals
;
Myocardial Infarction/physiopathology*
;
Mitophagy/drug effects*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Protein Kinases/genetics*
;
Male
;
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
3.Yougui Yin attenuates adipogenic differentiation of bone marrow mesenchymal stem cells by modulating PPARγ pathway to treat glucocorticoid-induced osteonecrosis.
Hong-Zhong XI ; Hao CHEN ; Shuai HE ; Wei SONG ; Jia-Hao FU ; Bin DU ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(12):3356-3367
This study aims to investigate the pharmacological effects and mechanisms of Yougui Yin in treating glucocorticoid-induced osteonecrosis. A rat model of glucocorticoid-associated osteonecrosis of the femoral head(GA-ONFH) was established by intramuscular injection of dexamethasone at 20 mg·kg~(-1) every other day for 8 weeks. Rats were randomly allocated into control, model, and low-and high-dose(1.5 and 3.0 g·kg~(-1), respectively) Yougui Yin groups. After modeling, rats in Yougui Yin groups were administrated with Yougui Yin via gavage, which was followed by femoral specimen collection. Hematoxylin-eosin staining was employed to observe femoral head repair, and immunofluorescence was employed to assess adipogenic differentiation of bone marrow mesenchymal stem cells(BMSCs) within the femoral head. Cell experiments were carried out with dexamethasone(1 μmol·L~(-1))-treated BMSCs to evaluate the effects of Yougui Yin-medicated serum on adipogenic differentiation. Animal experiments demonstrated that compared with the model group, Yougui Yin at both high and low doses significantly improved bone mineral density(BMD), bone volume/total volume(BV/TV) ratio, and trabecular thickness(Tb.Th) in the femoral head. Additionally, Yougui Yin alleviated necrosis-like changes and adipocyte infiltration and significantly reduced the expression level of peroxisome proliferator-activated receptor γ(PPARγ) in the femoral head, thereby suppressing the adipogenic differentiation of BMSCs in GA-ONFH rats. The cell experiments revealed that Yougui Yin-medicated serum markedly inhibited dexamethasone-induced adipogenic differentiation of BMSCs and down-regulated the level of PPARγ. The overexpression of PPARγ attenuated the inhibitory effect of Yougui Yin-medicated serum on the adipogenic differentiation of BMSCs, indicating the critical role of PPARγ in Yougui Yin-mediated suppression of adipogenic differentiation of BMSCs. In conclusion, Yougui Yin exerts therapeutic effects on glucocorticoid-induced osteonecrosis by down-regulating PPARγ expression and inhibiting adipogenic differentiation of BMSCs.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
PPAR gamma/genetics*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Glucocorticoids/adverse effects*
;
Rats, Sprague-Dawley
;
Adipogenesis/drug effects*
;
Osteonecrosis/genetics*
;
Cell Differentiation/drug effects*
;
Bone Marrow Cells/metabolism*
;
Femur Head Necrosis/chemically induced*
;
Humans
4.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
5.Mechanism of Hezi Decoction in reducing toxic side effects of Euphoriae Ebracteolata Radix on intestine based on proteomics.
Qian-Lin CHEN ; Hong-Li YU ; Hao WU ; Xin-Zhi WANG ; Tong-Laga LI ; Bing-Bing LIU ; Xin LI ; Yu-Xin GU ; Yan-Qing XU
China Journal of Chinese Materia Medica 2025;50(12):3214-3222
This paper aimed to explore the intestinal toxicity of Euphoriae Ebracteolata Radix(EER) before and after being processed with Mongolian medicine Hezi Decoction(HZD) and the toxicity-reducing mechanism of this processing method. The intestinal toxicity in rats treated with unprocessed EER and HZD-processed EER extracts via 95% ethanol was compared. The comparison was based on several indicators, including fecal volume, serum diamine oxidase(DAO) and D-lactate(D-LA) levels, the water content of various intestinal segments and their contents, and inflammatory factor levels in intestinal segments. Tandem mass tag(TMT) quantitative proteomics technology was employed to analyze the key proteins associated with changes in intestinal toxicity between unprocessed EER and HZD-processed EER. The results indicated that compared with the blank group, unprocessed EER significantly increased the fecal volume, serum DAO and D-LA levels, water content of the ileal segment and its contents, as well as the release levels of inflammatory factors, including tumor necrosis factor(TNF-α) and interleukin-1 beta(IL-1β) in the ileal segment of rats(P<0.05), indicating that EER can cause diarrhea, increase intestinal permeability, and induce intestinal inflammation. Compared with those in the unprocessed EER group, all indicators in the HZD-processed EER group were significantly reduced(P<0.05). The TMT quantitative proteomics analysis revealed that a total of 6 487 proteins were identified in the rat ileum tissue. Compared to the blank group, 182 proteins exhibited significant changes in the unprocessed EER group, while 907 proteins in the HZD-processed EER group showed significant changes. The intersection of the differential proteins between the two groups identified 38 common proteins. Among them, the protein levels of intestinal barrier tight junction protein claudin3, squalene monooxidase(Sqle), clusterin, Na~+/H~+ exchange regulatory cofactor NHE-RF3(Pdzk1), and Y+L amino acid transporter 1(Slc7a7) exhibited significant changes before and after processing, and these changes were closely related to intestinal barrier function. Compared with the blank group, the expression of claudin3, Pdzk1, and Slc7a7 in the raw product group was significantly down-regulated(P<0.05),while the expression of Sqle and clusterin was significantly up-regulated(P<0.05).Compared with the raw product group, the expression of claudin3, Pdzk1, and Slc7a7 in the processed product group of HZD was significantly up-regulated(P<0.05), while the expression of Sqle and clusterin was significantly down-regulated(P<0.05). Western blot was used to detect the expression level of claudin 3 in the ileum of rats in each group. The results show that compared to that in the blank group, the expression level of claudin 3 in the unprocessed EER group was significantly reduced(P<0.01); compared to that in the unprocessed EER group, the expression level of claudin 3 in the HZD-processed EER group was significantly increased(P<0.01). This finding aligned with the proteomic outcomes, indicating that claudin 3 protein levels could serve as a crucial indicator for intestinal damage caused by EER. In summary, HZD-processed EER can reduce EER's intestinal toxicity, and the primary mechanism for its alleviation of intestinal barrier damage is the regulation of the intestinal barrier tight junction protein claudin 3 and other intestinal-related proteins.
Animals
;
Drugs, Chinese Herbal/adverse effects*
;
Proteomics
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Intestines/drug effects*
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
6.Two new lignans from Ajania purpurea.
Yu-Shun CUI ; Min YAO ; Xin-Jun DI ; Zhi-Qiang LI ; Shan HAN ; Jun-Mao LI ; Yu-Lin FENG
China Journal of Chinese Materia Medica 2025;50(12):3322-3334
Macroporous resin adsorption column chromatography, silica gel column chromatography, ODS column chromatography, and semi-preparative high-performance liquid chromatography, combined with analytical methods such as NMR and MS, were employed to separate and identify compounds from the 70% ethanol extract of Ajania purpurea. A total of 30 compounds were isolated and identified, including 13 phenolic acids, 7 coumarins, 2 lignans, 1 flavonoid, 2 sesquiterpenes, 1 steroid, and 4 others. Among them, compounds 1 and 2 were newly discovered compounds, and compounds 4, 6, 8, 12, 14-23, 25, 28, and 30 were isolated from Ajania plants for the first time. Bioactivity screening showed that multiple compounds significantly inhibited the production of nitric oxide in lipopolysaccharide-stimulated RAW264.7 cells in a dose-dependent manner. Furthermore, compound 2 elevated the levels of glutathione in LPS-induced BEAS-2B cells, reduced the expression of pro-inflammatory cytokines such as tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β, enhanced the mRNA of GPX4, HMOX1, NFE2L2, and enhanced protein levels of GPX4, HO-1, Nrf2, and SLC7A11, demonstrating potential anti-ferroptotic effect.
Mice
;
Animals
;
Lignans/isolation & purification*
;
RAW 264.7 Cells
;
Humans
;
Nitric Oxide
;
Tumor Necrosis Factor-alpha/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
NF-E2-Related Factor 2/metabolism*
;
Macrophages/metabolism*
;
Interleukin-6/immunology*
7.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
8.Mechanism of Jiming Powder in inhibiting ferroptosis in treatment of myocardial infarction based on NRF2/HO-1/GPX4 pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(11):3108-3116
This study employed a mouse model of coronary artery ligation to assess the effect and mechanism of Jiming Powder on mitochondrial autophagy in mice with myocardial infarction. The mouse model of heart failure post-myocardial infarction was established by ligating the left anterior descending coronary artery. The pharmacological efficacy of Jiming Powder was evaluated through echocardiographic imaging, hematoxylin-eosin(HE) staining, and Masson staining. The levels of malondialdehyde(MDA), Fe~(2+), reduced glutathione(GSH), and superoxide dismutase(SOD) in heart tissues, as well as MDA immunofluorescence of heart tissues, were measured to assess lipid peroxidation and Fe~(2+) levels in the hearts of mice in different groups. Ferroptosis levels in the groups were evaluated using scanning electron microscopy and Prussian blue staining. Western blot analysis was conducted to detect the levels of key ferroptosis-related proteins, including nuclear factor erythroid 2-related factor 2(NRF2), ferritin heavy chain(FTH), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), heme oxygenase 1(HO-1), and Kelch-like ECH-associated protein 1(KEAP1). The results showed that compared with the model group, both the high-and low-dose Jiming Powder groups exhibited significantly reduced left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd), while the left ventricular ejection fraction(EF) and left ventricular fractional shortening(FS) were significantly improved, effectively enhancing cardiac function in mice post-myocardial infarction. HE staining revealed that Jiming Powder attenuated myocardial inflammatory cell infiltration post-infarction, and Masson staining indicated that Jiming Powder effectively reduced fibrosis in the infarct margin area. Treatment with Jiming Powder reduced the levels of MDA and Fe~(2+), indicators of lipid peroxidation post-myocardial infarction, while increasing GSH and SOD levels, thus protecting ischemic myocardium. Western blot results demonstrated that Jiming Powder reduced KEAP1 protein accumulation, activated the NRF2/HO-1/GPX4 pathway, and up-regulated the protein expression of FTH and SLC7A11, exerting an inhibitory effect on ferroptosis. This study reveals that Jiming Powder exerts a therapeutic effect on myocardial infarction by inhibiting ferroptosis through the NRF2/HO-1/GPX4 pathway, providing a foundation for subsequent research on the pharmacological effects of Jiming Powder.
Animals
;
Ferroptosis/drug effects*
;
Myocardial Infarction/physiopathology*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Heme Oxygenase-1/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Disease Models, Animal
9.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
10.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*

Result Analysis
Print
Save
E-mail