1.Analysis of traumatic acute diaphragmatic injuries.
Singapore medical journal 2025;66(6):333-337
INTRODUCTION:
Diaphragm rupture (DR) is a rare pathological event usually caused by trauma. We aimed to analyse the characteristics of acute diaphragmatic injuries due to trauma and the treatment of such injuries.
METHODS:
This study included the data of 15 patients who sustained diaphragmatic injuries due to trauma and underwent surgery at the Diyarbakır Gazi Yaşargil Training and Research Hospital General Surgery Service between January 2016 and December 2019.
RESULTS:
There were 240 patients who presented with abdominal trauma during the study period, and DR was detected in 15 (6.25%) of these patients. The male to female ratio was 14 to 1, and the average age of the patients was 29.66 ± 10.56 (15-46) years. The most common cause of diaphragmatic injury was penetrating abdominal injuries (86.7%). Blunt abdominal trauma accounted for 13.3% of the DR cases. Preoperative shock was present in four (26.7%) patients. Preoperative diagnosis was made in only one (6.7%) of 15 patients with DR. Other patients were diagnosed during operation. Thirteen (86.7%) patients had additional organ injuries, and two patients had isolated diaphragmatic injuries. The most frequently injured organ was the lung ( n = 7, 46.6%). Complications developed in six patients (morbidity rate 40%), and pulmonary complications were most frequently encountered ( n = 5, 33.3%). The mortality rate was 6.7%.
CONCLUSION
As traumatic DRs are uncommon and often associated with additional organ injuries, a careful general assessment of the patient should be made.
Humans
;
Male
;
Female
;
Adult
;
Diaphragm/surgery*
;
Middle Aged
;
Adolescent
;
Young Adult
;
Abdominal Injuries/complications*
;
Rupture/surgery*
;
Wounds, Penetrating/surgery*
;
Wounds, Nonpenetrating/complications*
;
Retrospective Studies
;
Turkey/epidemiology*
2.Effect of electroacupuncture on denervated skeletal muscle atrophy in rats based on p38 MAPK signaling pathway.
Wei QIU ; Chenglin TANG ; Cai LIAO ; Yunhao YANG ; Yan YANG ; Kang YANG ; Wanchun PENG
Chinese Acupuncture & Moxibustion 2025;45(1):61-70
OBJECTIVE:
To assess the impacts of electroacupuncture (EA) on the gait, oxidative stress, inflammatory reaction, and protein degradation in the rats of denervated skeletal muscle atrophy, and explore the potential mechanism of EA for alleviating denervated skeletal muscle atrophy.
METHODS:
Forty male SD rats, 8 weeks old, were randomly assigned to a sham-surgery group, a model group, an EA group, and a p38 MAPK inhibitor group, with 10 rats in each group. The right sciatic nerve was transected to establish a rat model of denervated skeletal muscle atrophy in the model group, the EA group and the p38 MAPK inhibitor group. In the sham-surgery group, the nerve was exposed without transection. One day after successful modeling, the rats in the EA group received EA at "Huantiao" (GB30) and "Zusanli" (ST36) on the right side, using a continuous wave with a frequency of 2 Hz and current intensity of 1 mA, for 15 min in each session, EA was delivered once a day, 6 times a week. In the p38 MAPK inhibitor group, the rats received the intraperitoneal injection with SB203580 (5 mg/kg), once a day, 6 times a week. The intervention was composed of 3 weeks in each group. After the intervention completion, the CatWalk XT 10.6 animal gait analysis system was used to record the gait parameters of rats. The wet weight ratio of the gastrocnemius muscle was calculated after the sample collected. Using HE staining, the fiber morphology and cross-sectional area of the gastrocnemius muscle were observed; ELISA was employed to measure the content of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in the gastrocnemius muscle; the biochemical hydroxyamine method was adopted to detect the content of superoxide dismutase (SOD) and malondialdehyde (MDA) in the gastrocnemius muscle; with immunohistochemistry and Western blot used, the expression of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylated (p)-p38 MAPK, muscle atrophy F-box gene (Atrogin-1), muscle RING finger 1 (Murf-1), nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) was detected in the gastrocnemius muscle.
RESULTS:
Compared to the sham-surgery group, in the model group, the standing duration, the swing time and the step cycle were increased (P<0.001), the footprint area of the maximum contact time, the print area, the average intensity of the maximum contact time, the average intensity, the swing speed, and the step length were decreased (P<0.001); the wet weight ratio of gastrocnemius muscle and fiber cross-sectional area were reduced (P<0.001); the content of IL-6, IL-1β, TNF-α and MDA in gastrocnemius muscle elevated (P<0.001), and that of SOD reduced (P<0.001); the positive and protein expression of p-p38 MAPK, Atrogin-1 and Murf-1 elevated (P<0.001) and that of Nrf2 and HO-1 dropped (P<0.001). When compared with the model group, in the EA group and the p38 MAPK inhibitor group, the standing duration, the swing time and the step cycle decreased (P<0.01), the footprint area of the maximum contact time, the print area, the average intensity of the maximum contact time, the average intensity, the swing speed, and the step length increased (P<0.01); the wet weight ratio of gastrocnemius muscle and fiber cross-sectional area were improved (P<0.01, P<0.05); the content of IL-6, IL-1β, TNF-α and MDA in gastrocnemius muscle dropped (P<0.05, P<0.01), and that of SOD elevated (P<0.01, P<0.05); the positive and protein expression of p-p38 MAPK, Atrogin-1 and Murf-1 dropped (P<0.01, P<0.05) and that of Nrf2 and HO-1 increased (P<0.01, P<0.05).
CONCLUSION
Electroacupuncture may alleviate skeletal muscle atrophy in denervated skeletal muscle atrophy rats by mediating the p38 MAPK activity, thereby suppressing oxidative stress, inflammatory reaction, and protein degradation.
Animals
;
Electroacupuncture
;
Male
;
Rats
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Rats, Sprague-Dawley
;
Muscular Atrophy/metabolism*
;
Muscle, Skeletal/metabolism*
;
Humans
;
Signal Transduction
;
Superoxide Dismutase/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Oxidative Stress
;
MAP Kinase Signaling System
;
Acupuncture Points
3.Clinical efficacy of antagonistic needling therapy on post-stroke lower limb spasticity and its effect on muscle morphology.
Ting YU ; Jianwei WANG ; Xinyu JIAO ; Bolei LI ; Xinhaoning ZHANG ; Pengyu ZHU
Chinese Acupuncture & Moxibustion 2025;45(2):139-145
OBJECTIVE:
To observe the effects of antagonistic needling therapy on lower limb spasticity and the muscle morphology of the tibialis anterior and gastrocnemius in patients with stroke.
METHODS:
A total of 100 patients with post-stroke lower limb spasticity were randomly divided into an antagonistic needling group (50 cases, 1 case dropped out) and a routine acupuncture group (50 cases, 1 case dropped out). Both groups received basic treatment and rehabilitation training. The routine acupuncture group was treated with scalp acupuncture at anterior oblique line of vertex-temporal and vertex lateral line 1, combined with body acupuncture at Jianyu (LI15), Hegu (LI4), Zusanli (ST36), Taichong (LR3), etc. on the affected side, with Quchi (LI11) and Hegu (LI4), Zusanli (ST36) and Fenglong (ST40), Yanglingquan (GB34) and Taichong (LR3) connected to an electroacupuncture device, using disperse wave at 2 Hz of frequency. The antagonistic needling group used the same scalp and upper limb acupoints as the routine acupuncture group, with additional antagonistic needling on the lower limb at Yanglingquan (GB34), Qiuxu (GB40), Jiexi (ST41), and Xuanzhong (GB39) on the affected side, with Quchi (LI11) and Hegu (LI4), Yanglingquan (GB34) and Qiuxu (GB40), Jiexi (ST41), and Xuanzhong (GB39) connected to an electroacupuncture device, using disperse wave at 2 Hz of frequency. Both groups received treatment once daily for 6 consecutive days per course, with a total of 4 courses. The modified Ashworth scale (MAS), Holden functional ambulation classification (FAC), lower limb Fugl-Meyer assessment (FMA), composite spasticity scale (CSS), and musculoskeletal ultrasound parameters (thickness and fiber length of the tibialis anterior and gastrocnemius, and pennation angle of the gastrocnemius on both sides) were evaluated before and after treatment. Clinical efficacy was compared between the two groups.
RESULTS:
Compared before treatment, the MAS grades and CSS scores were decreased in both groups after treatment (P<0.01), with greater reductions in the antagonistic needling group (P<0.05, P<0.01). FAC grades and FMA scores were increased in both groups after treatment (P<0.01, P<0.05), with greater improvements in the antagonistic needling group (P<0.05). The muscle thickness, fiber length of the tibialis anterior, the muscle thickness, fiber length and pennation angle of the gastrocnemius on the affected side were improved in both groups after treatment (P<0.01), with greater improvements in the antagonistic needling group (P<0.01, P<0.05). On the unaffected side, these parameters were also increased after treatment in both groups (P<0.01, P<0.05), but the antagonistic needling group showed smaller increases than the routine acupuncture group (P<0.01, P<0.05). The total effective rate in the antagonistic needling group was 91.8% (45/49), higher than 81.6% (40/49) in the routine acupuncture group (P<0.05).
CONCLUSION
Antagonistic needling could effectively reduce spasticity, improve motor function, and enhance muscle structure in patients with post-stroke lower limb spasticity.
Humans
;
Male
;
Female
;
Acupuncture Therapy
;
Middle Aged
;
Muscle Spasticity/pathology*
;
Aged
;
Stroke/physiopathology*
;
Lower Extremity/physiopathology*
;
Acupuncture Points
;
Adult
;
Muscle, Skeletal/pathology*
;
Treatment Outcome
4.Mechanism of the pretreatment with electroacupuncture of "biaoben acupoint combination" for regulating cardiomyocyte mitochondrial fission in the rats of myocardial ischemia-reperfusion injury.
Yanlin ZHANG ; Song WU ; Qianru GUO ; Yuntao YU ; Sunyi WANG ; Yuqi WEI ; Xiaoman WAN ; Zhen LU ; Xiaoru HE
Chinese Acupuncture & Moxibustion 2025;45(3):335-344
OBJECTIVE:
To observe the effect of electroacupuncture (EA) pretreatment of "biaoben acupoint combination" on cardiomyocyte mitochondrial fission in the rats with myocardial ischemia-reperfusion injury (MIRI) and explore its mechanism.
METHODS:
Fifty male SD rats were randomly divided into a sham-operation group, a model group, an EA pretreatment group, an EA pretreatment + Compound C group and an EA pretreatment+ML385 group, 10 rats in each group. In the EA pretreatment, the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, EA was delivered at bilateral "Neiguan" (PC6), "Zusanli" (ST36) and "Guanyuan" (CV4) for 20 min, with continuous wave and 2 Hz of frequency, 1 mA of current, once daily for consecutive 7 days. On day 8, in the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, 30 min before model preparation, the intraperitoneal injection with Compound C (0.3 mg/kg) and ML385 (30 mg/kg) was administered respectively. Except in the sham-operation group, the ligation of the left anterior descending coronary artery was performed to prepare MIRI rat model in the rest groups. In the sham-operation group, the thread was not ligated. After modeling, the content of reactive oxygen species (ROS) in the ischemic area was measured by flow cytometry, superoxide dismutase (SOD) was detected using xanthine oxidase method, and malondialdelyde (MDA) was detected using thiobarbituric acid (TBA) chromatometry. The morphology of myocardial tissue in the ischemic area was observed with HE staining, and the mitochondria ultrastructure of cardiomyocytes observed under transmission electron microscopy. Using immunofluorescence analysis, the positive expression of mitochondrial fission factor (MFF), mitochondrial fission 1 protein antibody (Fis1) and dynamin-related protein 1 (Drp1) was detected; and with immunohistochemical method used, the protein expression of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor E2-associated factor2 (Nrf2) and Drp1 in the ischemic area was detected.
RESULTS:
Compared with the sham-operation group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 increased in the model group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 decreased (P<0.01), and the protein expression of Drp1 elevated (P<0.01). Compared with the model group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01), and the protein expression of Drp1 declined (P<0.01); and in the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the positive expression of MFF, Fis1 and Drp1, and the protein expression of Drp1 were all reduced (P<0.01). When compared with the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01, P<0.05), and the protein expression of Drp1 decreased (P<0.05). In comparison with the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the cardiac muscle fiber rupture, cell swelling and mitochondrial disorders were obviously alleviated in the EA pretreatment group. The morphological changes were similar among the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group.
CONCLUSION
Electroacupuncture pretreatment of "biaoben acupoint combination" attenuates myocardial injury in MIRI rats, probably through promoting the phosphorylation of AMPK and Nrf2, inhibiting the excessive mitochondrial fission induced by Drp1, and reducing mitochondrial dysfunction caused by mitochondrial fragmentation and vacuolation.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Myocardial Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
;
Rats
;
Acupuncture Points
;
Mitochondrial Dynamics
;
Humans
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Superoxide Dismutase/metabolism*
5.Effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 and ferroptosis suppressor protein 1 in chronic heart failure rats.
Bing GAO ; Pan LIU ; Lan LI ; Tiantian GONG ; Ling ZHU ; Liya LI ; Ran XIA ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(6):781-790
OBJECTIVE:
To observe the effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 (TfR1), ferroptosis suppressor protein 1 (FSP1), atrial natriuretic peptide (ANP), and typeⅠcollagen myocardial collagen fibers (CollagenⅠ) in rats with chronic heart failure (CHF), and to explore the mechanism of moxibustion for ameliorating myocardial fibrosis and improving cardiac function in CHF.
METHODS:
Fifty SD rats were randomly divided into a normal group (n=10) and a modeling group (n=40). The CHF model was established in the modeling group by ligating the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into a model group (n=9), a moxibustion group (n=8), a rapamycin (RAPA) group (n=9), and a moxibustion+RAPA group (n=9). In the moxibustion group, moxibustion was delivered at bilateral "Feishu"(BL13) and "Xinshu" (BL15), 15 min at each point in each intervention, once daily, for 4 consecutive weeks. In the RAPA group, RAPA solution was administered intraperitoneally at a dose of 1 mg/kg, once daily for 4 consecutive weeks. In the moxibustion+RAPA group, RAPA solution was administered intraperitoneally after moxibustion. Ejection fraction (EF) and left ventricular fractional shortening (FS) were measured after modeling and intervention. After intervention, morphology of cardiac muscle was observed using HE staining and Masson's trichrome staining. Total iron content in myocardial tissue was detected using a colorimetric method. Western blot and qPCR were adopted to detect the protein and mRNA expression of TfR1, FSP1, ANP, and CollagenⅠ in myocardial tissue.
RESULTS:
Compared with the normal group, the EF and FS values decreased (P<0.01); necrosis, edema, degeneration, and arrangement disorder were presented in cardiomyocytes; inflammatory cells were obviously infiltrated, the structure of myocardial fibers was disarranged, the collagen fibers were obviously deposited and fibrosis increased (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue were elevated (P<0.01), while the protein and mRNA expression of FSP1 were reduced (P<0.01) in the model group. Compared with the model group, the moxibustion group showed that EF and FS increased (P<0.01); myocardial cell morphology was improved, and myocardial fibrosis was alleviated (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while the protein and mRNA expression of FSP1 increased (P<0.01, P<0.05). Compared with the model group, the myocardial fibrosis was increased (P<0.05); the total iron content and the protein and mRNA expression of TfR1, ANP, CollagenⅠ in myocardial tissue were increased (P<0.01), while protein and mRNA expression of FSP1 decreased (P<0.01) in the RAPA group. When compared with the RAPA group and the moxibustion + RAPA group, EF and FS were elevated (P<0.01, P<0.05); myocardial cells were improved in morphology, the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while protein and mRNA expression of FSP1 increased (P<0.01) in the moxibustion group. In comparison with the moxibustion + RAPA group, the RAPA group showed the decrease in EF and FS (P<0.01), the worsened myocardial fibrosis (P<0.01), the increase in the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue (P<0.01), and the decrease in the protein and mRNA expression of FSP1 (P<0.01).
CONCLUSION
Moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) can slow down the process of myocardial fibrosis and improve cardiac function in CHF rats. The mechanism of moxibustion may be related to inhibiting ferroptosis through regulating autophagy.
Animals
;
Rats
;
Heart Failure/physiopathology*
;
Moxibustion
;
Rats, Sprague-Dawley
;
Male
;
Receptors, Transferrin/genetics*
;
Myocardium/metabolism*
;
Acupuncture Points
;
Humans
;
Chronic Disease/therapy*
;
Antigens, CD/metabolism*
6.Mechanism of electroacupuncture-induced macrophage polarization in promoting acute skeletal muscle injury repair in rats.
Yuting HUANG ; Yuye LIN ; Guojun ZHANG ; Chufan ZENG ; Xia ZHANG ; Jingyu ZHANG ; Yu KAN ; Yanping FANG ; Xianghong JING ; Jun LIAO
Chinese Acupuncture & Moxibustion 2025;45(6):791-800
OBJECTIVE:
To investigate the potential mechanism by which electroacupuncture (EA) induces macrophage polarization to promote muscle satellite cell proliferation and differentiation, accelerating the repair of acute skeletal muscle injury.
METHODS:
Forty-two SPF-grade SD rats were randomly divided into three groups: a blank group (n=6), a model group (n=18), and an EA group (n=18). The model and EA groups established acute blunt contusion model of the right gastrocnemius muscle using a self-made striking device. From day 1 after modeling, rats in the EA group received EA at "Chengshan" (BL57) and "Yanglingquan" (GB34) on the right side, using disperse-dense wave with a frequency of 2 Hz/100 Hz and a current of approximately 2 mA. The EA treatment was administered once daily for 30 minutes for 3, 7, or 14 days based on the designated sampling time points. Gait analysis was performed using the Cat Walk XTTM system. Hematoxylin-eosin (HE) staining was used to observe the morphological changes in the gastrocnemius muscle. Masson staining was applied to evaluate collagen fiber content. Immunofluorescence was used to detect the expression of proliferating cell nuclear antigen (PCNA) in muscle satellite cells. Immunohistochemistry was used to assess the expression levels of CD68 and CD206, markers of macrophages. Serum levels of pro-inflammatory cytokines (TNF-α, IL-1β) and anti-inflammatory cytokines (IL-10, IL-13) were detected using ELISA.
RESULTS:
Compared with the blank group, the model group showed a significant reduction in average movement speed on days 3 and 7 after modeling (P<0.05), and a decrease in the right hind limb stride length on day 3 (P<0.05). Compared with the model group, the EA group showed increased average movement speed and right hind limb stride length on day 7 (P<0.05). In the blank group, the gastrocnemius muscle on the right side showed uniform and consistent inter-fiber spacing, with neatly and regularly arranged muscle cells. In contrast, the model group exhibited enlarged inter-fiber spacing, edema, and significant infiltration of red blood cells and inflammatory cells, with progressively increasing fibrosis over time. By day 14 after modeling, the EA group showed a return to baseline levels of inflammatory cell infiltration, and the degree of fibrosis was significantly lower than that observed in the model group. Compared with the blank group, the ratio of collagen fibers in the gastrocnemius muscle of the model group increased significantly on days 3, 7, and 14 after modeling (P<0.05). Compared with the model group, the EA group exhibited a lower collagen fiber ratio on days 3, 7, and 14 (P<0.05). Compared with the blank group, PCNA positive expression in the gastrocnemius muscle of the model group was significantly increased on days 3, 7, and 14 after modeling (P<0.05). Compared with the model group, the EA group exhibited significantly higher PCNA positive expression on days 3 and 7 (P<0.05). Compared with the blank group, the model group showed a significant increase in CD68-positive macrophage expression in the gastrocnemius muscle on day 3 after modeling (P<0.05), while CD206-positive macrophage expression increased on days 3, 7, and 14 (P<0.05). Compared with the model group, CD68 expression was significantly lower in the EA group on day 3 (P<0.05), whereas CD206 expression was significantly higher on days 3 and 7 (P<0.05), peaking on day 7 with CD206 expression. Compared with the blank group, serum TNF-α levels were significantly elevated in the model group on days 3 and 7 after modeling (P<0.05), while serum IL-1β levels were increased on days 3, 7, and 14 (P<0.05). Serum IL-10 and IL-13 levels were significantly higher on day 7 after modeling (P<0.05). Compared with the model group, the EA group exhibited lower serum TNF-α level on day 3 (P<0.05) and reduced serum IL-1β levels on days 3 and 7 (P<0.05), while serum IL-10 and IL-13 levels were significantly increased on day 7 (P<0.05).
CONCLUSION
EA could promote the repair of acute blunt contusion-induced gastrocnemius muscle injury by regulating the proliferation and differentiation of muscle satellite cells. This process is closely related to macrophage polarization.
Animals
;
Electroacupuncture
;
Rats, Sprague-Dawley
;
Rats
;
Macrophages/immunology*
;
Muscle, Skeletal/immunology*
;
Male
;
Humans
;
Female
;
Tumor Necrosis Factor-alpha/immunology*
;
Cell Proliferation
7.Effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on myocardial circPAN3, FOXO3, BNIP3 levels and myocardial fibrosis in rats with chronic heart failure.
Lan LI ; Bing GAO ; Jing HU ; Pan LIU ; Liya LI ; Ruihua LI ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1600-1608
OBJECTIVE:
To observe the effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on the circular RNA of exon 2-5 of the Pan3 gene (circPAN3), forkhead box O3 (FOXO3), and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in rats with chronic heart failure (CHF), and explore the potential mechanisms of moxibustion in alleviating myocardial fibrosis.
METHODS:
Ten rats of 60 male SPF-grade SD rats were randomly assigned into a normal group. The remaining rats underwent left anterior descending coronary artery (LAD) ligation to establish the CHF model. Forty successfully modeled rats were randomly divided into a model group, a moxibustion group, a rapamycin (RAPA) group, and a moxibustion+RAPA group, with 10 rats in each group. The moxibustion group received mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15), 30 min per session. The RAPA group received intraperitoneal injection of the autophagy activator RAPA (1 mg/kg). The moxibustion+RAPA group first received RAPA injection, followed by mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15). All interventions were administered once daily for 4 consecutive weeks. After the intervention, cardiac ultrasound was used to measure ejection fraction (EF) and left ventricular fractional shortening (FS). Serum placental growth factor (PLGF) level was determined by ELISA. Myocardial tissue morphology and collagen volume were assessed using hematoxylin-eosin (HE) staining and Masson's trichrome staining. The expression levels of circPAN3, FOXO3, and BNIP3 mRNA in myocardial tissue were detected by real-time PCR, while FOXO3 and BNIP3 protein expression levels were analyzed by Western blot.
RESULTS:
Compared with the normal group, the model group exhibited myocardial cell disorder, severe fibrosis, and increased collagen volume (P<0.01), along with significantly decreased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and the serum PLGF level, as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue were increased (P<0.01). Compared with the model group, the moxibustion group showed reduced myocardial fibrosis, decreased collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01). Compared with the model group, the RAPA group showed further deterioration in these parameters (P<0.01). Compared with the RAPA group, the moxibustion+RAPA group exhibited alleviation of myocardial fibrosis, reduced collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01).
CONCLUSION
Moxibustion could alleviate myocardial fibrosis in CHF rats, possibly through upregulation of myocardial circPAN3 expression, downregulation of FOXO3 and BNIP3 expression, and inhibition of excessive myocardial autophagy.
Animals
;
Moxibustion
;
Heart Failure/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Myocardium/pathology*
;
RNA, Circular/metabolism*
;
Membrane Proteins/metabolism*
;
Forkhead Box Protein O3/metabolism*
;
Acupuncture Points
;
Humans
;
Fibrosis/genetics*
;
Chronic Disease/therapy*
;
Mitochondrial Proteins
8.Effect of acupuncture pretreatment on PINK1/Parkin pathway-mediated mitophagy in rats with exercise-induced muscle damage.
Yulin GUO ; Ming GAO ; Huan CHEN ; Hui LI ; Xun TIAN ; Yuan ZHAO ; Gang XU ; Junling WEN ; Shaoxiong LI
Chinese Acupuncture & Moxibustion 2025;45(11):1617-1626
OBJECTIVE:
Based on the PTEN-induced hypothetical kinase 1 (PINK1)/Parkin pathway, the effect of acupuncture pretreatment on the expression of mitochondrial autophagy-related proteins in gastrocnemius muscle tissue of rats with exercise-induced muscle damage (EIMD) was observed, and the underlying mechanism of acupuncture pretreatment for the prevention and treatment of EIMD was explored.
METHODS:
Of 88 SD male rats, aged 6 weeks, 8 rats were randomly selected as a blank group, and the remaining 80 rats were randomized into a model group and an acupuncture pretreatment group, with 40 rats in each group. Either the model group or the acupuncture pretreatment group was subdivided randomly into 5 subgroups with 8 rats in each one according to the time points of sample collection, 0 h, 12 h, 24 h, 48 h and 72 h after modeling. An intermittent downhill running centrifugal exercise was carried out on an animal experimental treadmill to establish the EIMD model in the model group and the acupuncture pretreatment group. The rats in the acupuncture pretreatment group received acupuncture at "Guanyuan" (CV6) and bilateral "Zusanli" (ST36), once a day for 20 min each time, for 7 consecutive days before EIMD model preparation. Transmission electron microscopy was used to observe the ultrastructure of gastrocnemius muscle tissue in each group. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in serum were detected by ELISA. Western blot was used to detect the protein expression of PINK1, Parkin, sequestosome 1 (p62) and microtubule-associated protein light chain 3B (LC3B) in rat gastrocnemius muscle tissue. Real-time PCR was adopted to detect the mRNA expression of PINK1, Parkin, p62 and LC3B in rat gastrocnemius muscle tissue.
RESULTS:
Compared with the blank group, the mitochondria of gastrocnemius muscles showed obvious swelling in the 0 h, 12 h, 24 h, and 48 h model subgroups , autophagosomes were formed in the 12 h and 24 h model subgroups, and the mitochondrial morphology returned to normal gradually in the 72 h model subgroup. The serum MDA contents of rats in 5 model subgroups increased (P<0.01, P<0.05). The contents of SOD and CAT in the subgroups of 0 h, 12 h, 24 h and 48 h decreased (P<0.05, P<0.01). The protein and mRNA expression levels of PINK1, Parkin and LC3B in gastrocnemius muscle tissue of rats in 0 h, 12 h and 24 h subgroups were elevated (P<0.01); and the protein and mRNA expression levels of p62 in the 0 h, 12 h, 24 h and 48 h subgroups were reduced (P<0.01, P<0.05). Compared with the model subgroup at the same time point, the myofibril damage and the degree of mitochondrial swelling were mild in each acupuncture pretreatment subgroup, and the numbers of autophagosomes were fewer. The contents of MDA in the acupuncture pretreatment subgroups decreased at 0 h, 12 h, 24 h, and 48 h (P<0.05, P<0.01). The contents of SOD and CAT in the 12 h acupuncture pretreatment subgroup increased (P<0.05, P<0.01). The protein and mRNA expression levels of PINK1 and Parkin in the 0 h, 12 h, and 24 h acupuncture pretreatment subgroups decreased (P<0.01, P<0.05). The protein and mRNA expression levels of LC3B in the 12 h acupuncture pretreatment subgroup decreased (P<0.01), and that of p62 in the 0 h and 24 h acupuncture pretreatment subgroups increased (P<0.01, P<0.05).
CONCLUSION
The intermittent downhill running centrifugal exercise induces the excessive mitochondrial autophagy. Acupuncture pretreatment may attenuate EIMD, and the underlying mechanism is related to the regulation of PINK1/Parkin signaling pathway expression, reducing oxidative stress damage in skeletal muscle cells, and inhibiting mitochondrial autophagy overactivation.
Animals
;
Ubiquitin-Protein Ligases/genetics*
;
Male
;
Rats
;
Acupuncture Therapy
;
Protein Kinases/genetics*
;
Rats, Sprague-Dawley
;
Mitophagy
;
Humans
;
Muscle, Skeletal/metabolism*
;
Physical Conditioning, Animal
;
Muscular Diseases/physiopathology*
;
Signal Transduction
9.Direct stimulation of acupuncture at extraocular muscle attachment point for 13 cases of acquired extraocular muscle palsy.
Shuiling CHEN ; Zhuting RU ; Wanyu ZHOU ; Wu SUN ; Fangfang TAO ; Hang SHI ; Yuehong LI ; Liqun CHU
Chinese Acupuncture & Moxibustion 2025;45(12):1735-1738
OBJECTIVE:
To observe the effect of the direct stimulation of acupuncture at extraocular muscle attachment point on acquired extraocular muscle palsy.
METHODS:
Thirteen patients with acquired extraocular muscle palsy were treated with acupuncture directly at extraocular muscle (paralytic muscle) attachment point. Firstly, the intraocular conjunctival sac drops of topical anesthetic (procaine hydrochloride eye drops) were administered, 0.2 mL each time, once every 10 minutes, for a total of 3 times. Acupuncture was delivered immediately after the third drop. The sterile acupuncture needle for single use, 0.25 mm×25 mm, was inserted at the anatomical location of the corneal limbal attachment of paralytic extraocular muscle, with an angle of 10° to 15° formed between the needle tip and extraocular muscle, and a depth of 0.3 mm to 0.5 mm. Pivoted by the needle tip, the eyeball was moved passively towards the direction of normal action of orbital muscle, 30 to 50 times until the patient felt soreness of the eyeball; afterwards, the needle was removed. After acupuncture, levofloxacin eye drops were administered once (0.2 mL) at the affected eye. The treatment was given twice a week, and completed when diplopia disappeared. Before and after treatment, the diplopia and the synoptophore circumference were observed respectively.
RESULTS:
After 7 to 24 (15.46±5.56) times of direct stimulation with acupuncture at extraocular muscle attachment point, the symptoms of diplopia disappeared in 13 patients, the eye position restored to orthophoria, and the circumference of synoptophore was reduced to be (4.04±0.82)° from (19.38±3.98)° detected before treatment (P<0.05).
CONCLUSION
Acupuncture directly at extraocular muscle attachment can attenuate diplopia and improve ocular muscle function in patients with acquired extraocular muscle palsy.
Humans
;
Acupuncture Therapy
;
Male
;
Female
;
Middle Aged
;
Adult
;
Oculomotor Muscles/physiopathology*
;
Aged
;
Acupuncture Points
;
Ophthalmoplegia/physiopathology*
10.Mechanism of acupuncture for chronic blunt injury of lumbar muscle based on IGF-1/PI3K/AKT pathway.
Qun CHEN ; Dongmei WANG ; Zhengyu YANG ; Xiulian ZHENG ; Jianping LIN ; Shaoqing CHEN
Chinese Acupuncture & Moxibustion 2025;45(12):1759-1769
OBJECTIVE:
To explore the effect and mechanism of acupuncture at "Weizhong" (BL40) on microcirculation of paravertebral skeletal muscle in rats with chronic blunt injury of lumbar muscle based on the insulin-like growth factor-1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway.
METHODS:
Forty-eight SPF-grade SD rats were randomized into a blank group (8 rats) and a modeling group (40 rats). Chronic blunt injury model was established by weight impact method in the modeling group. Forty rats were successfully modeled, and were randomly divided into a model group, an acupuncture at Weizhong group (Weizhong group), an acupuncture at non-acupoint group (non-acupoint group), an inhibitor group, and an inhibitor+acupuncture at Weizhong group (inhibitor+Weizhong group), 8 rats in each group. In the Weizhong group and the inhibitor+Weizhong group, acupuncture was applied at bilateral "Weizhong" (BL40). In the non-acupoint group, acupuncture was applied at non-acupoints, i.e. points 0.5 cm inward from bilateral "Weizhong" (BL40). The acupuncture intervention was delivered 20 min each time, once a day for continuous 2 weeks. In the inhibitor group and the inhibitor+Weizhong group, intraperitoneal injection of IGF-1 receptor (IGF-1R) inhibitor was given once a day, at a dosage of 2 mg/100 g, for continuous 2 weeks. Before modeling and on the 1st, 7th and 14th days of intervention, the body mass was measured. Before and after modeling, and after intervention, the limb grip strength and paw withdrawal threshold (PWT) were measured. After intervention, the morphology of psoas muscle was observed by HE staining; the ultrastructure of psoas muscle capillaries was observed by electron microscopy; the levels of serum vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) were detected by ELISA; and the protein and mRNA expression of IGF-1, IGF-1R, PI3K, AKT of psoas muscle was detected by Western blot and real-time PCR.
RESULTS:
Compared with the blank group, in the model group, the body mass on the 7th and 14th days of intervention, the limb grip strength, and the PWT of left and right hind feet were decreased (P<0.001, P<0.01); the skeletal muscle cells showed enlarged intercellular space, loosely arranged and irregularly shaped, the capillaries in the psoas muscle tissues were edematous, and the lumen of the blood vessels was obviously atrophied; the levels of serum VEGF and eNOS were decreased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K, p-AKT/AKT values were decreased (P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K and AKT was decreased (P<0.001, P<0.05). Compared with the model group, in the Weizhong group, the body weight was increased on the 7th and 14th days of intervention (P<0.001), the limb grip strength and the PWT of the left and right hind feet were increased (P<0.001, P<0.01); the arrangement of the skeletal muscle cells was relatively tight and the intercellular space was reduced, the blood vessels tended to be regular and the structure of the basement membrane was continuous, while the lumens of blood vessels were collapsed locally; the levels of serum VEGF and eNOS were increased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K, p-AKT/AKT values were increased (P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K and AKT was increased (P<0.001, P<0.01). Compared with the model group, in the inhibitor group, the body mass was decreased on the 7th and 14th days of intervention (P<0.05, P<0.01); the limb grip strength and the PWT of the left hind foot were decreased (P<0.01, P<0.001); the intercellular space of skeletal muscle cells was larger, the nuclei of the cells and erythrocytes were scattered in the intercellular space, the damage of the capillaries in the muscular tissues was serious, the collagen fibers were sparsely distributed and disorganized; the levels of serum VEGF and eNOS were decreased (P<0.001, P<0.01); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K and p-AKT/AKT values were decreased (P<0.01, P<0.05, P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K, and AKT was decreased (P<0.01, P<0.001, P<0.05). Compared with the Weizhong group, in the non-acupoint group and the inhibitor+Weizhong group, the body mass was decreased on the 7th and 14th days of intervention (P<0.001, P<0.01), the limb grip strength was decreased (P<0.001); the morphology of muscle cell was relatively poor, with generally irregular, there was mild collapse and atrophy in the vascular lumen, and mild edema in the endothelial cells; the levels of serum VEGF and eNOS were decreased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K and p-AKT/AKT values were decreased (P<0.01, P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K, and AKT was decreased (P<0.001, P<0.01, P<0.05). Compared with the Weizhong group, the PWT of the left hind foot was decreased in the non-acupoint group (P<0.001), and PWT of the left and right hind feet was decreased in the inhibitor+Weizhong group (P<0.001).
CONCLUSION
Acupuncture at "Weizhong" (BL40) promotes lumbar muscle repair in chronic low back pain, its mechanism may be related to the activation of the IGF-1/PI3K/AKT pathway, thereby improving the microcirculation.
Animals
;
Insulin-Like Growth Factor I/genetics*
;
Acupuncture Therapy
;
Rats, Sprague-Dawley
;
Rats
;
Proto-Oncogene Proteins c-akt/genetics*
;
Male
;
Humans
;
Muscle, Skeletal/metabolism*
;
Signal Transduction
;
Phosphatidylinositol 3-Kinases/genetics*
;
Wounds, Nonpenetrating/metabolism*
;
Acupuncture Points

Result Analysis
Print
Save
E-mail