1.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
2.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
3.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
4.Feasibility and Efficacy of the Indoor Cognitive Training Combined Physical Activity Program Using Wearable Sensor and Mobile Device in Subjects With Mild Cognitive Impairment
Hak Hyeon KIM ; Grace Eun KIM ; Woori MOON ; Ji Hyun HAN ; Jeonga SHIN ; Seung Wan SUH ; Jeong Hun SHIN ; Won Kyo JEONG ; Ki Woong KIM ; Ji Won HAN
Journal of Korean Geriatric Psychiatry 2024;28(1):7-15
Objective:
We developed the Indoor Cognitive Training combined with Physical Activity (ICT-PA) program, incorporating memory registration, navigation, and image recall through wearable sensors and Bluetooth Low Energy tags, aimed at enhancing cognitive function and physical activity in elderly individuals with mild cognitive impairment (MCI).
Methods:
Thirty-six elderly individuals over 60 years diagnosed with MCI participated in a 6-week ICT-PA program. The primary outcome measure was the Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological Assessment Battery Total Score 1 (CERAD-TS1), and the secondary outcome measures were the Mini-Mental State Examination (MMSE), Subjective Memory Complaints Questionnaire (SMCQ), and Korean version of the Geriatric Depression Scale (GDS-KR). Changes in scores before and after the program were analyzed using paired t-tests. Program satisfaction was evaluated using a 5-point Likert scale.
Results:
CERAD-TS1 scores significantly improved after ICT-PA training (pre 57.3±11.3; post 60.3±13.1; p=0.006), while MMSE, SMCQ and GDS-KR scores remained unchanged. Subgroup analysis showed significant CERAD-TS improvements in the compliance group (>360 minutes of ICT-PA use) (pre 58.5±11.7; post 62.7±12.9; p=0.002). The average program satisfaction score was 7.7±1.6 out of 10. Data are presented as mean±standard deviation.
Conclusion
The ICT-PA program effectively improved cognitive functions in MCI patients, with high satisfaction rates.
5.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong- Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(1):1-23
6.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause: Part II
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):55-77
7.Corrigendum: 2023 Korean Society of Menopause - Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):126-126
8.Effect of Additional Medial Locking Plate Fixation and Autogenous Bone Graft for Distal Femur Nonunion after Lateral Locking Plate Fixation
Ho Min LEE ; Jong Pil KIM ; In Hwa BAEK ; Han Sol MOON ; Sun Kyo NAM
Journal of the Korean Fracture Society 2024;37(1):30-38
Purpose:
This study examined the outcomes of additional medial locking plate fixation and autogenous bone grafting in the treatment of nonunions that occurred after initial fixation for distal femoral fractures using lateral locking plates.
Materials and Methods:
The study involved eleven patients who initially underwent minimally invasive lateral locking plate fixation for distal femoral fractures between January 2008 and December 2020. The initial procedure was followed by additional medial locking plate fixation and autogenous bone grafting for clinically and radiographically confirmed nonunions, while leaving the stable lateral locking plate in situ. A clinical evaluation of the bone union time, knee joint range of motion, visual analog scale (VAS) pain scores, presence of postoperative complications, and functional evaluations using the lower extremity functional scale (LEFS) were performed.
Results:
In all cases, bone union was achieved in an average of 6.1 months after the secondary surgery. The range of knee joint motion, weight-bearing ability, and VAS and LEFS scores improved at the final follow-up compared to the preoperative conditions. All patients could walk without walking assistive devices and did not experience pain at the fracture site. On the other hand, three patients complained of pain in the lateral knee joint caused by irritation by the lateral locking plate; hence, lateral hardware removal was performed. One patient complained of mild paresthesia at the anteromedial incision site.Severe complications, such as deep infection or metal failure, were not observed.
Conclusion
For nonunion with stable lateral locking plates after minimally invasive lateral locking plate fixation of distal femur fractures, additional medial locking plate fixation and autogenous bone grafting, while leaving the lateral locking plate intact, can achieve successful bone union.
9.Prediction of Early Recanalization after Intravenous Thrombolysis in Patients with Large-Vessel Occlusion
Young Dae KIM ; Hyo Suk NAM ; Joonsang YOO ; Hyungjong PARK ; Sung-Il SOHN ; Jeong-Ho HONG ; Byung Moon KIM ; Dong Joon KIM ; Oh Young BANG ; Woo-Keun SEO ; Jong-Won CHUNG ; Kyung-Yul LEE ; Yo Han JUNG ; Hye Sun LEE ; Seong Hwan AHN ; Dong Hoon SHIN ; Hye-Yeon CHOI ; Han-Jin CHO ; Jang-Hyun BAEK ; Gyu Sik KIM ; Kwon-Duk SEO ; Seo Hyun KIM ; Tae-Jin SONG ; Jinkwon KIM ; Sang Won HAN ; Joong Hyun PARK ; Sung Ik LEE ; JoonNyung HEO ; Jin Kyo CHOI ; Ji Hoe HEO ;
Journal of Stroke 2021;23(2):244-252
Background:
and Purpose We aimed to develop a model predicting early recanalization after intravenous tissue plasminogen activator (t-PA) treatment in large-vessel occlusion.
Methods:
Using data from two different multicenter prospective cohorts, we determined the factors associated with early recanalization immediately after t-PA in stroke patients with large-vessel occlusion, and developed and validated a prediction model for early recanalization. Clot volume was semiautomatically measured on thin-section computed tomography using software, and the degree of collaterals was determined using the Tan score. Follow-up angiographic studies were performed immediately after t-PA treatment to assess early recanalization.
Results:
Early recanalization, assessed 61.0±44.7 minutes after t-PA bolus, was achieved in 15.5% (15/97) in the derivation cohort and in 10.5% (8/76) in the validation cohort. Clot volume (odds ratio [OR], 0.979; 95% confidence interval [CI], 0.961 to 0.997; P=0.020) and good collaterals (OR, 6.129; 95% CI, 1.592 to 23.594; P=0.008) were significant factors associated with early recanalization. The area under the curve (AUC) of the model including clot volume was 0.819 (95% CI, 0.720 to 0.917) and 0.842 (95% CI, 0.746 to 0.938) in the derivation and validation cohorts, respectively. The AUC improved when good collaterals were added (derivation cohort: AUC, 0.876; 95% CI, 0.802 to 0.950; P=0.164; validation cohort: AUC, 0.949; 95% CI, 0.886 to 1.000; P=0.036). The integrated discrimination improvement also showed significantly improved prediction (0.097; 95% CI, 0.009 to 0.185; P=0.032).
Conclusions
The model using clot volume and collaterals predicted early recanalization after intravenous t-PA and had a high performance. This model may aid in determining the recanalization treatment strategy in stroke patients with large-vessel occlusion.
10.Prediction of Early Recanalization after Intravenous Thrombolysis in Patients with Large-Vessel Occlusion
Young Dae KIM ; Hyo Suk NAM ; Joonsang YOO ; Hyungjong PARK ; Sung-Il SOHN ; Jeong-Ho HONG ; Byung Moon KIM ; Dong Joon KIM ; Oh Young BANG ; Woo-Keun SEO ; Jong-Won CHUNG ; Kyung-Yul LEE ; Yo Han JUNG ; Hye Sun LEE ; Seong Hwan AHN ; Dong Hoon SHIN ; Hye-Yeon CHOI ; Han-Jin CHO ; Jang-Hyun BAEK ; Gyu Sik KIM ; Kwon-Duk SEO ; Seo Hyun KIM ; Tae-Jin SONG ; Jinkwon KIM ; Sang Won HAN ; Joong Hyun PARK ; Sung Ik LEE ; JoonNyung HEO ; Jin Kyo CHOI ; Ji Hoe HEO ;
Journal of Stroke 2021;23(2):244-252
Background:
and Purpose We aimed to develop a model predicting early recanalization after intravenous tissue plasminogen activator (t-PA) treatment in large-vessel occlusion.
Methods:
Using data from two different multicenter prospective cohorts, we determined the factors associated with early recanalization immediately after t-PA in stroke patients with large-vessel occlusion, and developed and validated a prediction model for early recanalization. Clot volume was semiautomatically measured on thin-section computed tomography using software, and the degree of collaterals was determined using the Tan score. Follow-up angiographic studies were performed immediately after t-PA treatment to assess early recanalization.
Results:
Early recanalization, assessed 61.0±44.7 minutes after t-PA bolus, was achieved in 15.5% (15/97) in the derivation cohort and in 10.5% (8/76) in the validation cohort. Clot volume (odds ratio [OR], 0.979; 95% confidence interval [CI], 0.961 to 0.997; P=0.020) and good collaterals (OR, 6.129; 95% CI, 1.592 to 23.594; P=0.008) were significant factors associated with early recanalization. The area under the curve (AUC) of the model including clot volume was 0.819 (95% CI, 0.720 to 0.917) and 0.842 (95% CI, 0.746 to 0.938) in the derivation and validation cohorts, respectively. The AUC improved when good collaterals were added (derivation cohort: AUC, 0.876; 95% CI, 0.802 to 0.950; P=0.164; validation cohort: AUC, 0.949; 95% CI, 0.886 to 1.000; P=0.036). The integrated discrimination improvement also showed significantly improved prediction (0.097; 95% CI, 0.009 to 0.185; P=0.032).
Conclusions
The model using clot volume and collaterals predicted early recanalization after intravenous t-PA and had a high performance. This model may aid in determining the recanalization treatment strategy in stroke patients with large-vessel occlusion.

Result Analysis
Print
Save
E-mail