1.Analysis of microsatellite instability in endometrial cancer: The significance of minimal microsatellite shift.
Li LIANG ; Xin LI ; Lin NONG ; Ying DONG ; Ji Xin ZHANG ; Dong LI ; Ting LI
Journal of Peking University(Health Sciences) 2023;55(2):254-261
OBJECTIVE:
To analyze the differences and characteristics of microsatellite instability (MSI) in endometrial cancer (EMC), by using colorectal cancer (CRC) as control.
METHODS:
In the study, 228 cases of EMC were collected. For comparative analysis, 770 cases of CRC were collected. Mismatch repair (MMR) expression was detected by immunohistochemistry (IHC), and microsatellite instability (MSI) was analyzed by PCR and capillary electrophoresis fragment analysis (MSI-PCR). MSI-PCR was detected using five mononucleotide repeat markers: BAT-25, BAT-26, NR-21, NR-24, and MONO-27.
RESULTS:
In EMC, we found 27.19% (62/228) of deficient mismatch repair (dMMR) using IHC, significantly higher than CRC (7.79%, 60/770). Meanwhile, subclonal expression of MMR protein was found in 4 cases of dMMR-EMC and 2 cases of dMMR-CRC. According to the criteria of major micro-satellite shift, we found 16.23% (37/228) of MSI-high (MSI-H), 2.63% (6/228) of MSI-low (MSI-L), and 81.14% (185/228) of microsatellite stability (MSS) in EMC using MSI-PCR. The discor-dance rate between MMR-IHC and MSI-PCR in EMC was 11.84% (27/228). In CRC, we found 8.05% (62/770) of MSI-H, 0.13% (1/770) of MSI-L, and 91.82% (707/770) of MSS. The discordance rate between MMR-IHC and MSI-PCR in CRC was only 0.52% (4/770). However, according to the criteria of minimal microsatellite shift, 12 cases of EMC showed minimal microsatellite shift including 8 cases of dMMR/MSS and 4 cases of dMMR/MSI-L and these cases were ultimately evaluated as dMMR/MSI-H. Then, 21.49% (49/228) of EMC showed MSI-H and the discordance rate MMR-IHC and MSI-PCR in EMC decreased to 6.58% (15/228). No minimal microsatellite shift was found in CRC. Compared with EMC group with major microsatellite shift, cases with minimal microsatellite shift showed younger age, better tumor differentiation, and earlier International Federation of Gynecology and Obstetrics (FIGO) stage. There were significant differences in histological variant and FIGO stage between the two groups (P < 0.001, P=0.006).
CONCLUSION
EMC was more prone to minimal microsatellite shift, which should not be ignored in the interpretation of MSI-PCR results. The combined detection of MMR-IHC and MSI-PCR is the most sensitive and specific method to capture MSI tumors.
Female
;
Humans
;
Microsatellite Instability
;
Colorectal Neoplasms
;
Microsatellite Repeats
;
Endometrial Neoplasms
;
DNA Mismatch Repair
2.A robust microsatellite instability detection model for unpaired colorectal cancer tissue samples.
Zili ZHANG ; Hua WAN ; Bing XU ; Hongyang HE ; Guangyu SHAN ; Jingbo ZHANG ; Qixi WU ; Tong LI
Chinese Medical Journal 2023;136(9):1082-1088
BACKGROUND:
Microsatellite instability (MSI) is a key biomarker for cancer immunotherapy and prognosis. Integration of MSI testing into a next-generation-sequencing (NGS) panel could save tissue sample, reduce turn-around time and cost, and provide MSI status and comprehensive genomic profiling in single test. We aimed to develop an MSI calling model to detect MSI status along with the NGS panel-based profiling test using tumor-only samples.
METHODS:
From January 2019 to December 2020, a total of 174 colorectal cancer (CRC) patients were enrolled, including 31 MSI-high (MSI-H) and 143 microsatellite stability (MSS) cases. Among them, 56 paired tumor and normal samples (10 MSI-H and 46 MSS) were used for modeling, and another 118 tumor-only samples were used for validation. MSI polymerase chain reaction (MSI-PCR) was performed as the gold standard. A baseline was built for the selected microsatellite loci using the NGS data of 56 normal blood samples. An MSI detection model was constructed by analyzing the NGS data of tissue samples. The performance of the model was compared with the results of MSI-PCR.
RESULTS:
We first intersected the target genomic regions of the NGS panels used in this study to select common microsatellite loci. A total of 42 loci including 23 mononucleotide repeat sites and 19 longer repeat sites were candidates for modeling. As mononucleotide repeat sites are more sensitive and specific for detecting MSI status than sites with longer length motif and the mononucleotide repeat sites performed even better than the total sites, a model containing 23 mononucleotide repeat sites was constructed and named Colorectal Cancer Microsatellite Instability test (CRC-MSI). The model achieved 100% sensitivity and 100% specificity when compared with MSI-PCR in both training and validation sets. Furthermore, the CRC-MSI model was robust with the tumor content as low as 6%. In addition, 8 out of 10 MSI-H samples showed alternations in the four mismatch repair genes ( MLH1 , MSH2 , MSH6 , and PMS2 ).
CONCLUSION
MSI status can be accurately determined along the targeted NGS panels using only tumor samples. The performance of mononucleotide repeat sites surpasses loci with longer repeat motif in MSI calling.
Humans
;
Microsatellite Instability
;
Colorectal Neoplasms/diagnosis*
;
Microsatellite Repeats/genetics*
;
DNA Mismatch Repair
3.Genetic diversity analysis and fingerprints of Chrysanthemum×morifolium based on SSR molecular markers.
Zihang LI ; Lifei HE ; Xiujun WANG ; Linfan GUO ; Chunyan LUO ; Qingwei LI
Chinese Journal of Biotechnology 2023;39(7):2839-2860
The present study aims to explore the genetic diversity of germplasm resources of Chrysanthemum×morifolium (hereinafter, C.×morifolium) at the molecular level and to establish a fingerprint database of C.×morifolium varieties. We employed 12 pairs of primers with high levels of polymorphism, clear bands, and high degrees of reproducibility to analyze the SSR molecular markers and genetic diversity of 91 C.×morifolium materials and 14 chrysanthemum- related materials. With regard to constructing the fingerprints of the tested materials, we chose 9 pairs of core primers. The findings revealed that 12 primer pairs detected 104 alleles in 105 samples, ranging from 2 to 26. The average number of observed alleles (Na) per site was 9.25. The average number of effective alleles (Ne) per site was 2.745 6, with its range being 1.276 0 to 4.742 5. Shannon genetic diversity index (I) values ranged between 0.513 3 and 2.239 9 (M=1.209 0). Nei's gene diversity index (H) ranged between 0.216 3 and 0.789 1 (M=0.578 0). The observed heterozygosity (Ho) ranged between 0.223 3 and 0.895 2 (M=0.557 5). The expected heterozygosity (He) ranged between 0.217 4 and 0.793 3 (M=0.580 8). The polymorphism information content (PIC) ranged between 0.211 5 and 0.774 0 (M=0.532 9). The genetic similarity (GS) ranged between 0.228 5 and 1.000 0 (M=0.608 3). Cluster analysis revealed that when the genetic distance (GD) equals to 0.30, the tested materials can be classified into 2 groups. When the GD equals to 0.27, the first group can be divided into 6 subgroups; accordingly, 105 tested materials can be divided into 7 subgroups. The cophenetic correlation test was carried out based on the cluster analysis, and the corresponding results showed that the cluster map correlated with the genetic similarity coefficient (r=0.952 73). According to the results of Structure population analysis, we obtained the optimal population number, with the true number of populations (K) being 3 and the population being divided concerning Q≥0.5. Three subgroups, i.e., Q1, Q2 and Q3, included 34, 33 and 28 germplasms, respectively, and the remaining 10 germplasms were identified as the mixed population. During the experiment, 9 pairs of core primers were screened among the total of 12 for a complete differentiation regarding 105 tested materials, and the fingerprints of 91 C.×morifolium materials and 14 chrysanthemum-related materials were further constructed. Overall, there were significant genetic differences and rich genetic diversity among C.×morifolium materials, which would shed light on the garden application and variety selection fields of C.×morifolium. The fingerprint database of 105 C.×morifolium varieties and chrysanthemum-related species may provide technical support for future research regarding the identification and screening system of C.×morifolium varieties.
Genetic Variation
;
Chrysanthemum/genetics*
;
Reproducibility of Results
;
Microsatellite Repeats/genetics*
;
Polymorphism, Genetic
;
Biomarkers
;
Phylogeny
4.Chemical constituents of diterpenoids from Boswellia carterii.
Rong-Ye WANG ; Hui XIA ; Yong-Xiang WANG ; Hao HUANG ; Bo-Kai WANG ; Meng DU ; Yue-Lin SONG ; Yun-Fang ZHAO ; Jiao ZHENG ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2023;48(9):2464-2470
This paper explored the chemical constituents of Boswellia carterii by column chromatography on silica gel, Sephadex LH-20, ODS column chromatography, and semi-preparative HPLC. The structures of the compounds were identified by physicochemical properties and spectroscopic data such as infrared radiation(IR), ultra violet(UV), mass spectrometry(MS), and nuclear magnetic resonance(NMR). Seven diterpenoids were isolated and purified from n-hexane of B. carterii. The isolates were identified as(1S,3E,7E,11R,12R)-11-hydroxy-1-isopropyl-4,8,12-trimethyl-15-oxabicyclo[10.2.1]pentadeca-3,7-dien-5-one(1),(1R,3S,4R,7E,11E)-4,8,12,15,15-pentamethyl-14-oxabicyclo[11.2.1]hexadeca-7,11-dien-4-ol(2), incensole(3),(-)-(R)-nephthenol(4), euphraticanoid F(5), dilospirane B(6), and dictyotin C(7). Among them, compounds 1 and 2 were new and their absolute configurations were determined by comparison of the calculated and experimental electronic circular dichroisms(ECDs). Compounds 6 and 7 were obtained from B. carterii for the first time.
Molecular Structure
;
Boswellia/chemistry*
;
Diterpenes/chemistry*
;
Mass Spectrometry
5.Relationship between immune regulation and structure of polysaccharides.
Nuo CHEN ; Wen-Jie XI ; Mei-Fen HU ; Xing-Ye WEI ; Ping XIAO ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2023;48(10):2667-2678
Polysaccharides have significant immunomodulatory activity and have good development value in food and medicine fields. At present, there are many studies on the chemical structure and immune activity of polysaccharides, but the relationship between them of polysaccharides has not been fully explained, which limits the further development and utilization of polysaccharide resources. The immune activity of polysaccharides is closely related to their own structure. This paper systematically summarized the relationship between the relative molecular weight, monosaccharide composition, glycosidic bond types, chemical modification, and advanced conformation of polysaccharides and the immune regulation, aiming to provide references for the profound study of polysaccharide structure-activity relationship and utilization of polysaccharides.
Monosaccharides/chemistry*
;
Structure-Activity Relationship
;
Molecular Weight
;
Antioxidants/pharmacology*
;
Polysaccharides/chemistry*
6.Progress in antitumor activity of diterpenoid alkaloids in plants of Aconitum.
Xiao-Zheng CHEN ; Ju CHENG ; Xiao-Yi SHI ; Li-Yuan YANG ; Xiao-Dong XIE
China Journal of Chinese Materia Medica 2023;48(14):3765-3773
Small-molecule compounds with rich sources have diverse structures and activities. The active ingredients in traditional Chinese medicine(TCM) provide new sources for the discovery of new antitumor drugs. Aconitum plants as Chinese medicinal plants have the effects of dispelling wind, removing dampness, warming meridian, and relieving pain. They are mainly used to treat inflammation, pain, rheumatism, and tumors, improve heart function, and dilate blood vessels in clinical practice. Diterpenoid alkaloids are the main active components of Aconitum plants, including C20-, C19-, C18-diterpenoid alkaloids and bis-diterpenoid alkaloids. Stu-dies have demonstrated that diterpenoid alkaloids can effectively treat lung cancer, liver cancer, breast cancer, colon cancer and other cancers. Diterpenoid alkaloids are considered as the most promising natural compounds against cancers. In this review, we summarized the chemical structures and antitumor activities of C20-, C19-, C18-diterpenoid alkaloids and bis-diterpenoid alkaloids extracted from plants of Aconitum, aiming to provide reference for further development of diterpenoid alkaloids from Aconitum as antitumor drugs.
Humans
;
Aconitum/chemistry*
;
Molecular Structure
;
Alkaloids/analysis*
;
Diterpenes/chemistry*
;
Antineoplastic Agents/chemistry*
;
Plant Roots/chemistry*
7.Geranylated or prenylated flavonoids from Cajanus volubilis.
Li RAO ; Yu SU ; Qian HE ; Jia YE ; Yu LIU ; Yue FAN ; Feng HU ; Zhen ZHOU ; Lishe GAN ; Yonghui ZHANG ; Chuanrui ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):292-297
Five new flavonoid derivatives, cajavolubones A-E (1-5), along with six known analogues (6-11) were isolated from Cajanus volubilis, and their structures were elucidated by spectroscopic analysis and quantum chemical calculations. Cajavolubones A and B (1 and 2) were identified as two geranylated chalcones. Cajavolubone C (3) was a prenylated flavone, while cajavolubones D and E (4 and 5) were two prenylated isoflavanones. Compounds 3, 8, 9 and 11 displayed cytotoxicity against HCT-116 cancer cell line.
Flavonoids/chemistry*
;
Cajanus
;
Molecular Structure
;
Chalcones/chemistry*
8.Five new terpenoids from Viburnum odoratissimum var. sessiliflorum.
Yang LI ; Yajiao JIAN ; Fan XU ; Yongxin LUO ; Zhixuan LI ; Yi OU ; Yan WEN ; Jingwei JIN ; Chuanrui ZHANG ; Lishe GAN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):298-307
Five new terpenoids, including two vibsane-type diterpenoids (1, 2) and three iridoid allosides (3-5), together with eight known ones, were isolated from the leaves and twigs of Viburnum odoratissimum var.sessiliflorum. Their planar structures and relative configurations were determined by spectroscopic methods, especially 2D NMR techniques. The sugar moieties of the iridoids were confirmed as β-D-allose by GC analysis after acid hydrolysis and acetylation. The absolute configurations of neovibsanin Q (1) and dehydrovibsanol B (2) were determined by quantum chemical calculation of their theoretical electronic circular dichroism (ECD) spectra and Rh2(OCOCF3)4-induced ECD analysis. The anti-inflammatory activities of compounds 1, 3, 4, and 5 were evaluated using an LPS-induced RAW264.7 cell model. Compounds 3suppressed the release of NO in a dose-dependent manner, with an IC50 value of 55.64 μmol·L-1. The cytotoxicities of compounds 1-5 on HCT-116 cells were assessed and the results showed that compounds 2 and 3 exhibited moderate inhibitory activities with IC50 values of 13.8 and 12.3 μmol·L-1, respectively.
Terpenes/pharmacology*
;
Viburnum/chemistry*
;
Molecular Structure
;
Diterpenes/chemistry*
;
Plant Leaves/chemistry*
9.Bioassay-guided isolation of α-Glucosidase inhibitory constituents from Hypericum sampsonii.
Linlan TAO ; Shuangyu XU ; Zizhen ZHANG ; Yanan LI ; Jue YANG ; Wei GU ; Ping YI ; Xiaojiang HAO ; Chunmao YUAN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):443-453
This study employed the α-glucosidase inhibitory activity model as an anti-diabetic assay and implemented a bioactivity-guided isolation strategy to identify novel natural compounds with potential therapeutic properties. Hypericum sampsoniiwas investigated, leading to the isolation of two highly modified seco-polycyclic polyprenylated acylphloroglucinols (PPAPs) (1 and 2), eight phenolic derivatives (3-10), and four terpene derivatives (11-14). The structures of compounds 1 and 2, featuring an unprecedented octahydro-2H-chromen-2-one ring system, were fully characterized using extensive spectroscopic data and quantum chemistry calculations. Six compounds (1, 5-7, 9, and 14) exhibited potential inhibitory effects against α-glucosidase, with IC50 values ranging from 0.050 ± 0.0016 to 366.70 ± 11.08 μg·mL-1. Notably, compound 5 (0.050 ± 0.0016 μg·mL-1) was identified as the most potential α-glucosidase inhibitor, with an inhibitory effect about 6900 times stronger than the positive control, acarbose (IC50 = 346.63 ± 15.65 μg·mL-1). A docking study was conducted to predict molecular interactions between two compounds (1 and 5) and α-glucosidase, and the hypothetical biosynthetic pathways of the two unprecedented seco-PPAPs were proposed.
Molecular Structure
;
Hypericum/chemistry*
;
alpha-Glucosidases
;
Magnetic Resonance Spectroscopy
;
Glycoside Hydrolase Inhibitors/pharmacology*
10.New di-spirocyclic labdane diterpenoids from the aerial parts of Leonurus japonicus.
Xinxin CAO ; Xinxin WANG ; Yu ZHANG ; Defeng XU ; Xiuqing SONG ; Jinhai YU ; Jie BAO ; Junsheng ZHANG ; Hua ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):551-560
Phytochemical investigation on the ethanol extract of a well-known medicinal herb Leonurus japonicus, led to the separation of 18 labdane type diterpenoids (1-18). Through comprehensive spectroscopic analyses and quantum chemical calculations, these compounds were structurally characterized as six new interesting 5,5,5-di-spirocyclic ones (1-6), two new (7 and 8) and six known (13-18) interesting 6,5,5-di-spirocyclic ones, a new rare 14,15-dinor derivative (9), and three new ones incorporating a γ-lactone unit (10-12). An in vitro neuroprotective assay in RSC96 cells revealed that compounds 7 and 12 exhibited neuroprotective activity in a concentration-dependent way, comparable to the reference drug N-acetylcysteine.
Magnetic Resonance Spectroscopy
;
Leonurus/chemistry*
;
Plants, Medicinal
;
Diterpenes/chemistry*
;
Plant Components, Aerial
;
Molecular Structure

Result Analysis
Print
Save
E-mail