1.The regulation and mechanism of apolipoprotein A5 on myocardial lipid deposition.
Xiao-Jie YANG ; Jiang LI ; Jing-Yuan CHEN ; Teng-Teng ZHU ; Yu-Si CHEN ; Hai-Hua QIU ; Wen-Jie CHEN ; Xiao-Qin LUO ; Jun LUO
Acta Physiologica Sinica 2025;77(1):35-46
The current study aimed to clarify the roles of apolipoprotein A5 (ApoA5) and milk fat globule-epidermal growth factor 8 (Mfge8) in regulating myocardial lipid deposition and the regulatory relationship between them. The serum levels of ApoA5 and Mfge8 in obese and healthy people were compared, and the obesity mouse model induced by the high-fat diet (HFD) was established. In addition, primary cardiomyocytes were purified and identified from the hearts of suckling mice. The 0.8 mmol/L sodium palmitate treatment was used to establish the lipid deposition cardiomyocyte model in vitro. ApoA5-overexpressing adenovirus was used to observe its effects on cardiac function and lipids. The expressions of the fatty acid uptake-related molecules and Mfge8 on transcription or translation levels were detected. Co-immunoprecipitation was used to verify the interaction between ApoA5 and Mfge8 proteins. Immunofluorescence was used to observe the co-localization of Mfge8 protein with ApoA5 or lysosome-associated membrane protein 2 (LAMP2). Recombinant rMfge8 was added to cardiomyocytes to investigate the regulatory mechanism of ApoA5 on Mfge8. The results showed that participants in the simple obesity group had a significant decrease in serum ApoA5 levels (P < 0.05) and a significant increase in Mfge8 levels (P < 0.05) in comparison with the healthy control group. The adenovirus treatment successfully overexpressed ApoA5 in HFD-fed obese mice and palmitic acid-induced lipid deposition cardiomyocytes, respectively. ApoA5 reduced the weight of HFD-fed obese mice (P < 0.05), shortened left ventricular isovolumic relaxation time (IVRT), increased left ventricular ejection fraction (LVEF), and significantly reduced plasma levels of triglycerides (TG) and cholesterol (CHOL) (P < 0.05). In myocardial tissue and cardiomyocytes, the overexpression of ApoA5 significantly reduced the deposition of TG (P < 0.05), transcription of fatty acid translocase (FAT/CD36) (P < 0.05), fatty acid-binding protein (FABP) (P < 0.05), and fatty acid transport protein (FATP) (P < 0.05), and protein expression of Mfge8 (P < 0.05), while the transcription levels of Mfge8 were not significantly altered (P > 0.05). In vitro, the Mfge8 protein was captured using ApoA5 as bait protein, indicating a direct interaction between them. Overexpression of ApoA5 led to an increase in co-localization of Mfge8 with ApoA5 or LAMP2 in cardiomyocytes under lipid deposition status. On this basis, exogenous added recombinant rMfge8 counteracted the improvement of lipid deposition in cardiomyocytes by ApoA5. The above results indicate that the overexpression of ApoA5 can reduce fatty acid uptake in myocardial cells under lipid deposition status by regulating the content and cellular localization of Mfge8 protein, thereby significantly reducing myocardial lipid deposition and improving cardiac diastolic and systolic function.
Animals
;
Humans
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Obesity/physiopathology*
;
Male
;
Apolipoprotein A-V/blood*
;
Lipid Metabolism/physiology*
;
Milk Proteins/blood*
;
Myocardium/metabolism*
;
Diet, High-Fat
;
Antigens, Surface/physiology*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Female
3.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
4.Effect of interleukin-17 gene polymorphism on susceptibility to cow's milk protein allergy in infants and its association with gut microbiota.
Wen-Ying HAO ; Chun ZHU ; Song LU ; Hong WANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):696-701
OBJECTIVES:
To investigate the effect of interleukin-17 (IL-17) gene polymorphism on the susceptibility to cow's milk protein allergy (CMPA) in infants and its association with gut microbiota.
METHODS:
A prospective study was conducted involving 100 infants diagnosed with CMPA at the Women and Children's Hospital of Ningbo University from January 2022 to October 2024. A total of 100 healthy infants undergoing routine check-ups at the same hospital during the same period was enrolled as the control group. Medical information was obtained through the electronic medical record system. IL-17A (rs2275913) and IL-17F (rs1889570) polymorphisms were detected using polymerase chain reaction-restriction fragment length polymorphism method. Serum IL-17 levels were measured using enzyme-linked immunosorbent assay, and high-throughput sequencing was employed to analyze the relative abundance of Lactobacillus and Bifidobacterium. Multivariate logistic regression analysis was used to explore the influencing factors of CMPA occurrence in infants.
RESULTS:
The proportions of infants with a family history of allergy and those with vitamin D deficiency or insufficiency were significantly higher in the CMPA group compared to those in the control group (P<0.05). The distribution of IL-17F (rs1889570) genotypes showed significant differences between the CMPA and control groups (P<0.05), with the frequency of the A allele being significantly higher in the CMPA group (P<0.05). Multivariate logistic regression analysis revealed that a family history of allergy, vitamin D deficiency or insufficiency, and carrying the IL-17F (rs1889570) AA genotype were independent influencing factors for CMPA in infants (P<0.05). Infants in the CMPA group with the IL-17F (rs1889570) AA genotype had significantly higher serum IL-17 levels compared to those with AG/GG genotypes (P<0.05), while the relative abundance of Lactobacillus and Bifidobacterium was significantly lower (P<0.05).
CONCLUSIONS
IL-17F (rs1889570) gene polymorphism influences susceptibility to CMPA in infants, potentially through mechanisms involving IL-17 expression and the relative abundance of gut probiotics.
Humans
;
Interleukin-17/genetics*
;
Milk Hypersensitivity/microbiology*
;
Female
;
Infant
;
Male
;
Prospective Studies
;
Genetic Predisposition to Disease
;
Gastrointestinal Microbiome
;
Polymorphism, Genetic
;
Milk Proteins/immunology*
5.Role and Mechanism of Hyaluronic Acid-modified Milk Exosomes in Reversing Pemetrexed Resistance in Lung Adenocarcinoma Cells.
Chinese Journal of Lung Cancer 2025;28(9):658-666
BACKGROUND:
Lung cancer currently ranks first globally in both incidence and mortality. Pemetrexed (PMX) serves as a first-line treatment for lung adenocarcinoma (LUAD), but the patients often develop drug resistance during therapy. Milk exosome (mEXO) have the advantages of low immunogenicity, high tissue affinity, and low cost, and mEXO itself has anti-tumor effects. Hyaluronan (HA) naturally bind to CD44, a receptor which is highly expressed in LUAD tissues. This study aims to construct hyaluronan-modified milk exosome (HA-mEXO) and preliminarily investigate their molecular mechanisms for reversing PMX resistance through cellular experiments.
METHODS:
Exosomes were extracted from milk using high-speed centrifugation, and HA-mEXO was constructed. PMX-resistant A549 and PC-9 cell lines were treated with mEXO and HA-mEXO, respectively. CCK-8 assays, colony formation assays, Transwell assays, and flow cytometry were performed to evaluate proliferation, colony formation, migration, invasion, and apoptosis phenotypes in the treated resistant cell lines. Finally, transcriptomic sequencing, analysis, and cellular functional recovery experiments were conducted to investigate the mechanism by which HA-mEXO reverses PMX resistance in LUAD cells.
RESULTS:
The expression of CD44 in A549 and PC-9 LUAD drug-resistant cell lines was significantly higher than that in parental cells, and the uptake rate of HA-mEXO by drug-resistant cell lines was significantly higher than that of mEXO. Compared to the mEXO group, HA-mEXO-treated A549 and PC-9 resistant cells exhibited significantly reduced half maximal inhibitory concentration (IC50) values for PMX, markedly diminished clonogenic, migratory, and invasive capabilities, and a significantly increased proportion of apoptotic cells. Western blot analysis revealed that, compared to parental cells, A549 and PC-9 drug-resistant cells exhibited downregulated ZNF516 expression and upregulated ABCC5 expression. Immunofluorescence analysis revealed that HA-mEXO treatment downregulated ABCC5 expression in A549 and PC-9 drug-resistant cells compared to the PBS group, whereas co-treatment with HA-mEXO and ZNF516 knockdown showed no significant change in ABCC5 expression.
CONCLUSIONS
HA-mEXO carrying ZNF516 suppress ABCC5 expression, thereby enhancing the sensitivity of A549 and PC-9 LAUD drug-resistant cells to PMX.
Humans
;
Hyaluronic Acid/chemistry*
;
Drug Resistance, Neoplasm/drug effects*
;
Exosomes/chemistry*
;
Adenocarcinoma of Lung/genetics*
;
Pemetrexed/pharmacology*
;
Animals
;
Lung Neoplasms/pathology*
;
Milk/chemistry*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Hyaluronan Receptors/metabolism*
6.Dynamic changes in physiochemical, structural, and flavor characteristics of ginger-juice milk curd.
Haifeng PAN ; Wenna BAO ; Yi CHEN ; Hongxiu LIAO
Journal of Zhejiang University. Science. B 2025;26(4):393-404
Dynamic changes in the physiochemical, structural, and flavor characteristics of ginger-juice milk curd were explored by texture analysis, scanning electron microscopy, rheometry, electronic tongue, and gas chromatography-mass spectrometry (GC-MS). Protein electrophoresis showed that ginger juice could hydrolyze αs-, β-, and κ-casein. Curd formation was initiated at 90 s, marked by significant changes in intensity detected via intrinsic fluorescence. The contents of soluble protein and calcium decreased rapidly during coagulation, while the caseinolytic activity, storage moduli, loss moduli, hardness, adhesiveness, and water-holding capacity increased, resulting in a denser gel structure with smaller pores and fewer cavitations as observed by scanning electron microscopy. Electronic tongue analysis indicated that milk could neutralize the astringency and saltiness of ginger juice, rendering the taste of ginger-juice milk curd more akin to that of milk. Approximately 70 volatile components were detected in ginger-juice milk curd. α-Zingiberene, α-curcumene, β-sesquiphellandrene, and β-bisabolene were the predominant volatile flavor compounds, exhibiting an initial decrease in content followed by stability after 90 s. Decanoic acid, γ-elemene, and caryophyllene were identified as unique volatile compounds after mixing of milk and ginger juice. Understanding the dynamic changes in these characteristics during coagulation holds significant importance for the production of ginger-juice milk curd.
Zingiber officinale/chemistry*
;
Milk/chemistry*
;
Animals
;
Taste
;
Gas Chromatography-Mass Spectrometry
;
Caseins/chemistry*
;
Microscopy, Electron, Scanning
;
Rheology
;
Flavoring Agents
8.Effect of breastfeeding on immune function in infants with human cytomegalovirus infection.
Peng-Kai FAN ; Xin XIE ; Jing CHEN ; Li-Huan SHI ; Ming-Fa GUO ; Wei-Li YANG ; Wei LIU
Chinese Journal of Contemporary Pediatrics 2023;25(3):278-283
OBJECTIVES:
To study the effect of breastfeeding on immune function in infants with human cytomegalovirus (HCMV) infection.
METHODS:
A retrospective analysis was performed on the medical data of 135 infants with HCMV infection who were admitted to Children's Hospital Affiliated to Zhengzhou University from January 2021 to May 2022, and all these infants received breastfeeding. According to the results of breast milk HCMV-DNA testing, the infants were divided into two groups: breast milk HCMV positive (n=78) and breast milk HCMV negative (n=57). According to the median breast milk HCMV-DNA load, the infants in the breast milk HCMV positive group were further divided into two subgroups: high viral load and low viral load (n=39 each). Related indicators were compared between the breast milk positive and negative HCMV groups and between the breast milk high viral load and low viral load subgroups, including the percentages of peripheral blood lymphocyte subsets (CD3+ T cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and CD19+ B cells), CD4+/CD8+ ratio, IgG, IgM, IgA, and urine HCMV-DNA load.
RESULTS:
There were no significant differences in the percentages of CD3+ T cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and CD19+ B cells, CD4+/CD8+ ratio, IgG, IgM, IgA, and urine HCMV-DNA load between the breast milk HCMV positive and HCMV negative groups, as well as between the breast milk high viral load and low viral load subgroups (P>0.05).
CONCLUSIONS
Breastfeeding with HCMV does not affect the immune function of infants with HCMV infection.
Female
;
Child
;
Humans
;
Infant
;
Breast Feeding
;
Cytomegalovirus Infections
;
CD8-Positive T-Lymphocytes
;
Retrospective Studies
;
Infectious Disease Transmission, Vertical
;
Milk, Human
;
Cytomegalovirus
;
Immunity
;
Immunoglobulin A
;
Immunoglobulin G
;
Immunoglobulin M
9.Mare's milk attenuates sodium dextran sulfate induced inflammation in mouse ulcerative colitis.
Yun WU ; Shuang WANG ; Dengqimuge AO ; Damasiren BA ; Linqiqige XI ; Ganqiqige CA ; Qin SI
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1057-1062
Objective To investigate the immunomodulatory effect of mare's milk on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. Methods Kunming mice were randomly divided into a blank group(0.8 mL/day saline by gavage) and a DSS modeling group. After modeling, the DSS modeling group was further divided into a control group (0.8 mL/day saline), a salazosulfapyridine (SASP) treated group(430 mg/(kg.d)) and a mare's milk group(0.8 mL/day), with 16 mice in each group. After 10 days of gavage administration, HE staining was performed to observe colonic inflammation, and the disease activity index (DAI) and colonic mucosal damage index (CMDI) were scored. ELISA was used to determine the levels of interleukin 1β (IL-1β), IL-6, and IL-10 in mouse colonic tissues, and flow cytometry was used to detect the percentages of CD4+ and CD8+ T lymphocytes in peripheral blood. Results Compared to the blank group, all indexes in mice of the control group indicated that DSS successfully induced UC. Compared to the control group, colon shortening in UC mice was attenuated in the mare's milk group; inflammation and ulcer formation in colonic tissues were inhibited; DAI and CMDI scores were lowere; IL-1β and IL-6 levels in mouse colonic tissues were significantly reduced; IL-10 levels were increased and the CD4+/CD8+ T cell ratio was reduced. Conclusion Mare's milk can inhibit the inflammation of DSS-induced UC mice through immune regulation.
Mice
;
Animals
;
Female
;
Horses
;
Colitis, Ulcerative/drug therapy*
;
Interleukin-10
;
Dextran Sulfate
;
Interleukin-6
;
Milk
;
Signal Transduction
;
Disease Models, Animal
;
Inflammation
;
Colon
10.Comparison of two luminescence detection methods for staphylococcal enterotoxin C content in simulated milk samples.
Yuling ZHENG ; Ye WANG ; Qingyu LYU
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1089-1093
Objective To compare the sensitivity and accuracy of amplified luminescent proximity homogeneous assay linked immunosorbent assay (AlphaLISA) and magnetic particles-based chemiluminescence immunoassay (MP-CLIA) for detection of staphylococcal enterotoxin C (SEC) in the simulated milk samples. Methods The AlphaLISA was constructed using goat anti-SEC polyclonal antibody-coupled receptor microspheres, biotin-labeled SEC monoclonal antibody and streptavidin-coupled donor microspheres. The MP-CLIA was constructed using goat anti-SEC polyclonal antibody conjugated alkaline phosphatase, biotin-labeled anti-SEC monoclonal antibody and streptavidin conjugated magnetic beads. Results The sensitivity of AlphaLISA to detect SEC content in simulated milk samples was 4.04 ng/L, and the coefficient of variation (CV) was 1.98%~9.82%. The sensitivity of MP-CLIA was 108.19 ng/L and CV was 4.63%~20.40%. Conclusion Compared with MP-CLIA, AlphaLISA is more sensitive and accurate to detecting SEC.
Animals
;
Streptavidin
;
Biotin
;
Luminescence
;
Milk
;
Antibodies, Monoclonal
;
Goats
;
Immunoassay/methods*

Result Analysis
Print
Save
E-mail