1.Surface modification of multifunctional ferrite magnetic nanoparticles and progress in biomedicine.
Linxue ZHANG ; Nuernisha ALIFU ; Zhongwen LAN ; Zhong YU ; Qifan LI ; Xiaona JIANG ; Chuanjian WU ; Ke SUN
Journal of Biomedical Engineering 2023;40(2):378-383
Magnetic ferrite nanoparticles (MFNPs) have great application potential in biomedical fields such as magnetic resonance imaging, targeted drugs, magnetothermal therapy and gene delivery. MFNPs can migrate under the action of a magnetic field and target specific cells or tissues. However, to apply MFNPs to organisms, further modifications on the surface of MFNPs are required. In this paper, the common modification methods of MFNPs are reviewed, their applications in medical fields such as bioimaging, medical detection, and biotherapy are summarized, and the future application directions of MFNPs are further prospected.
Ferric Compounds
;
Magnetic Resonance Imaging/methods*
;
Magnetics
;
Magnetite Nanoparticles/therapeutic use*
;
Nanoparticles
2.Progress in the Application of Magnetic Nanoparticles in Forensic Trace Analysis.
Zhong-Ping CHENG ; Yan-Fei LIU ; Xing-Min XU ; Yao-Nan MO
Journal of Forensic Medicine 2023;39(2):168-175
Given the complexity of biological samples and the trace nature of target materials in forensic trace analysis, a simple and effective method is needed to obtain sufficient target materials from complex substrates. Magnetic nanoparticles (MNPs) have shown a wide range of application value in many research fields, such as biomedicine, drug delivery and separation, due to their unique superparamagnetic properties, stable physical and chemical properties, biocompatibility, small size, high specific surface area and other characteristics. To apply MNPs in the pretreatment of forensic materials, maximize the extraction rate of the target materials, and minimize interference factors to meet the requirements of trace analysis of the target materials, this paper reviews the application of MNPs in the fields of forensic toxicological analysis, environmental forensic science, trace evidence analysis and criminal investigation in recent years, and provides research ideas for the application of MNPs in forensic trace analysis.
Magnetite Nanoparticles/chemistry*
;
Forensic Medicine
;
Forensic Sciences
;
Forensic Toxicology
3.Research on a portable shielding-free ultra-low field magnetic resonance imaging system.
Yuxiang ZHANG ; Wei HE ; Lei YANG ; Yucheng HE ; Jiamin WU ; Zheng XU
Journal of Biomedical Engineering 2023;40(5):829-836
The portable light-weight magnetic resonance imaging system can be deployed in special occasions such as Intensive Care Unit (ICU) and ambulances, making it possible to implement bedside monitoring imaging systems, mobile stroke units and magnetic resonance platforms in remote areas. Compared with medium and high field imaging systems, ultra-low-field magnetic resonance imaging equipment utilizes light-weight permanent magnets, which are compact and easy to move. However, the image quality is highly susceptible to external electromagnetic interference without a shielded room and there are still many key technical problems in hardware design to be solved. In this paper, the system hardware design and environmental electromagnetic interference elimination algorithm were studied. Consequently, some research results were obtained and a prototype of portable shielding-free 50 mT magnetic resonance imaging system was built. The light-weight magnet and its uniformity, coil system and noise elimination algorithm and human brain imaging were verified. Finally, high-quality images of the healthy human brain were obtained. The results of this study would provide reference for the development and application of ultra-low-field magnetic resonance imaging technology.
Humans
;
Magnetic Resonance Imaging/methods*
;
Magnetic Resonance Spectroscopy/methods*
;
Head
;
Equipment Design
;
Magnets
4.Research progress on effect of magnetic nanoparticle composite scaffold on osteogenesis.
Wenni WANG ; Chaoqun CHEN ; Xinhua GU
Journal of Zhejiang University. Medical sciences 2022;51(1):102-107
Magnetic nanoparticles (MNP) have been widely used as biomaterials due to their unique magnetic responsiveness and biocompatibility, which also can promote osteogenic differentiation through their inherent micro-magnetic field. The MNP composite scaffold retains its superparamagnetism, which has good physical, mechanical and biological properties with significant osteogenic effects and . Magnetic field has been proved to promote bone tissue repair by affecting cell metabolic behavior. MNP composite scaffolds under magnetic field can synergically promote bone tissue repair and regeneration, which has great application potential in the field of bone tissue engineering. This article summarizes the performance of magnetic composite scaffold, the research progress on the effect of MNP composite scaffold with magnetic fields on osteogenesis, to provide reference for further research and clinical application.
Cell Differentiation
;
Magnetite Nanoparticles
;
Osteogenesis
;
Tissue Engineering
;
Tissue Scaffolds
5.Development of Magnetic Anchoring Lung Nodule Positioning Device.
Xiaohai CUI ; Fan MU ; Yazhou QIN ; Haodong WANG ; Dapeng LIU ; Junke FU ; Yi LYU
Chinese Journal of Medical Instrumentation 2021;45(1):32-36
The magnetic anchoring lung nodule positioning device is composed of a target magnet, an anchor magnet, a coaxial puncture needle and a puncture navigation template, through these, a new type of accurate positioning technology for small pulmonary nodules is derived. The device inserts the target magnet into the both sides nearby the lung nodule under the guidance of CT. Helped by the mutual attraction of the two target magnets, they can be fixed in the lung tissue, avoiding the movement in the lung, and accurately positioning the target lung nodule before surgery. In thoracoscopic surgery, the anchor magnet and the target magnet attract each other to achieve the purpose of positioning the target nodule. The device uses the characteristics of non-contact suction of magnetic materials biomedical engineering technology, eliminating the previous procedure of direct interaction with the positioning marks, finally achieves the target of precise positioning of lung nodules and rapid surgical removal.
Humans
;
Lung
;
Lung Neoplasms
;
Magnetic Phenomena
;
Magnets
;
Solitary Pulmonary Nodule
;
Thoracic Surgery, Video-Assisted
;
Tomography, X-Ray Computed
6.1.5 T Nuclear Magnetic Resonance Imaging System Failure Treatment and Rectification Summary.
Guiming LI ; Yongsheng WANG ; Xiang XIAO ; Jianbo ZHU
Chinese Journal of Medical Instrumentation 2021;45(4):469-472
Quench of magnetic resonance imaging system refers to the process that the superconducting condition inside the magnet is destroyed due to some reason. The large current stored in the coil is quickly converted into heat at the place where the resistance is formed, and a large amount of liquid helium in the magnet is evaporated. If it happens, it will cause huge loss to the user. We introduce the real cases of 1.5 T magnetic resonance imaging system's quench fault, maintenance treatment and management improvement, which can be used for reference by various medical institutions, so as to better strengthen the operation and maintenance management of magnetic resonance imaging system, so as to avoid the occurrence of out of tolerance fault, and do a good job in the guarantee work after the out of tolerance fault.
Helium
;
Magnetic Resonance Imaging
;
Magnets
7.Detection method of nonlinear magnetized harmonic signal of medical magnetic nanoparticles.
Yangyang LIU ; Li KE ; Qiang DU ; Wanni ZU ; Ce JIANG ; Yulu ZHANG
Journal of Biomedical Engineering 2021;38(1):56-64
Medical magnetic nanoparticles are nano-medical materials with superparamagnetism, which can be collected in the tumor tissue through blood circulation, and magnetic particle imaging technology can be used to visualize the concentration of magnetic nanoparticles in the living body to achieve the purpose of tumor imaging. Based on the nonlinear magnetization characteristics of magnetic particles and the frequency characteristics of their magnetization, a differential detection method for the third harmonic of magnetic particle detection signals is proposed. It was modeled and analyzed, to study the nonlinear magnetization response characteristics of magnetic particles under alternating field, and the spectral characteristics of magnetic particle signals. At the same time, the relationship between each harmonic and the amount of medical magnetic nanoparticle samples was studied. On this basis, a signal detection experimental system was built to analyze the spectral characteristics and power spectral density of the detected signal, and to study the relationship between the signal and the excitation frequency. The signal detection experiment was carried out by the above method. The experimental results showed that under the alternating excitation field, the medical magnetic nanoparticles would generate a spike signal higher than the background sensing signal, and the magnetic particle signal existed in the odd harmonics of the detected signal spectrum. And the spectral energy was concentrated at the third harmonic, that is, the third harmonic magnetic particle signal detection that meets the medical detection requirement could be realized. In addition, the relationship between each harmonic and the particle sample volume had a positive growth relationship, and the detected medical magnetic nanoparticle sample volume could be determined according to the relationship. At the same time, the selection of the excitation frequency was limited by the sensitivity of the system, and the detection peak of the third harmonic of the detection signal was reached at the excitation frequency of 1 kHz. It provides theoretical and technical support for the detection of medical magnetic nanoparticle imaging signals in magnetic particle imaging research.
Magnetics
;
Magnetite Nanoparticles
8.Design of Magnamosis System for Endoscopic Tissue Clamping.
Miaomiao ZHANG ; Lin JI ; Ting LAN ; Peinan LIU ; Hanzhi ZHANG ; Xingyi MOU ; Aihua SHI ; Feng MA ; Yi LYU ; Xiaopeng YAN
Chinese Journal of Medical Instrumentation 2021;45(6):612-615
Based on the principle of magnetic anastomosis technique, the design of magnetic anastomosis system for endoscopic tissue clamping is proposed. The system includes a semi-ring magnet, a special structure transparent cap and a detachable push rod. With the help of the existing digestive endoscopy and endoscopic tissue gripper, the endoscopic close clamping and anastomosis of the bleeding or perforated tissue can be completed. After the anastomosis, the magnet falls off and is discharged through the digestive tract. Animal experiments showed that the system was easy to use, the fistula was clamped firmly, the magnet was discharged for 7~21 days, and there was no magnet retention and digestive tract obstruction. Further safety verification, optimization of endoscopic operation, the system can be used in clinical trial.
Anastomosis, Surgical
;
Animals
;
Constriction
;
Endoscopy, Gastrointestinal
;
Magnetics
;
Magnets
9.Magnet Quench Factors in Ramping-up Procedure.
Hongjie WANG ; Jinjiang JIN ; Lijian WANG ; Yonghua CHU
Chinese Journal of Medical Instrumentation 2021;45(6):698-701
Ramping-up is the magnet current injection procedure which is under the control of resistance, voltage, current lead temperature, magnet pressure, temperature and so on. In this procedure, the factors related to the stability of the magnet such as, magnet temperature, pressure and currents are constantly changing. This procedure is the main step which the magnet-quench occurs in. This study uses the data collected during 7 years and SIMENS MRI ramping-up theory, in order to help engineers understand the key factors to reduce the magnet quench during the ramping up procedure.
Magnets
;
Temperature
10.Simulation research on magnetoacoustic B-scan imaging of magnetic nanoparticles.
Xiaoyu SHI ; Guoqiang LIU ; Xiaoheng YAN ; Yanhong LI
Journal of Biomedical Engineering 2020;37(5):786-792
As drug carriers, magnetic nanoparticles can specifically bind to tumors and have the potential for targeted therapy. It is of great significance to explore non-invasive imaging methods that can detect the distribution of magnetic nanoparticles. Based on the mechanism that magnetic nanoparticles can generate ultrasonic waves through the pulsed magnetic field excitation, the sound pressure wave equation containing the concentration information of magnetic nanoparticles was derived. Using the finite element method and the analytical solution, the consistent transient pulsed magnetic field was obtained. A three-dimensional simulation model was constructed for the coupling calculation of electromagnetic field and sound field. The simulation results verified that the sound pressure waveform at the detection point reflected the position of magnetic nanoparticles in biological tissue. Using the sound pressure data detected by the ultrasonic transducer, the B-scan imaging of the magnetic nanoparticles was achieved. The maximum error of the target area position was 1.56%, and the magnetic nanoparticles regions with different concentrations were distinguished by comparing the amplitude of the boundary signals in the image. Studies in this paper indicate that B-scan imaging can quickly and accurately obtain the dimensional and positional information of the target region and is expected to be used for the detection of magnetic nanoparticles in targeted therapy.
Acoustics
;
Computer Simulation
;
Magnetics
;
Magnetite Nanoparticles
;
Tomography

Result Analysis
Print
Save
E-mail