1.Screening of the specific aptamer of human CD20 extracellular protein expressed in Escherichia coli by systematic evolution of ligands by exponential enrichment.
Fan CHEN ; Fan YANG ; Lei GAO ; Yue HU ; Yun XUE ; Jing ZHOU ; Jianhua KANG ; Wei WANG
Chinese Journal of Biotechnology 2025;41(4):1467-1477
CD20 is a surface marker protein of B-cell lymphoma, and its extracellular region is the target of specific antibodies and drugs. To obtain a cheap and easily modified specific preparation targeting CD20, we optimized the gene of CD20 extracellular region according to codon degeneracy to facilitate its expression in Escherichia coli. The optimized gene was cloned into pGEX-4T-1 vector, and the recombinant vector was transformed into E. coli BL21(DE3) for expression. The purified protein was identified by SDS-PAGE and Western blotting. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to screen the ssDNA aptamer that specifically binds to the fusion protein, and the affinity of the aptamer to CD20 was detected by flow cytometry. Then, the cytotoxicity test was carried out to examine the inhibitory effect of the aptamer on B lymphoma cells. In this study, we established the prokaryotic expression method of CD20 and obtained the aptamer specifically binding to the extracellular region of CD20, which laid a foundation for the development of therapeutic drugs targeting CD20.
Humans
;
Escherichia coli/metabolism*
;
SELEX Aptamer Technique/methods*
;
Aptamers, Nucleotide/genetics*
;
Antigens, CD20/metabolism*
;
Ligands
2.Neuronomodulation of Excitable Neurons.
Yizhang CHEN ; Lin XIAO ; Jian QIU
Neuroscience Bulletin 2024;40(1):103-112
Neuronomodulation refers to the modulation of neural conduction and synaptic transmission (i.e., the conduction process involved in synaptic transmission) of excitable neurons via changes in the membrane potential in response to chemical substances, from spillover neurotransmitters to paracrine or endocrine hormones circulating in the blood. Neuronomodulation can be direct or indirect, depending on the transduction pathways from the ligand binding site to the ion pore, either on the same molecule, i.e. the ion channel, or through an intermediate step on different molecules. The major players in direct neuronomodulation are ligand-gated or voltage-gated ion channels. The key process of direct neuronomodulation is the binding and chemoactivation of ligand-gated or voltage-gated ion channels, either orthosterically or allosterically, by various ligands. Indirect neuronomodulation involves metabotropic receptor-mediated slow potentials, where steroid hormones, cytokines, and chemokines can implement these actions. Elucidating neuronomodulation is of great significance for understanding the physiological mechanisms of brain function, and the occurrence and treatment of diseases.
Ligands
;
Neurons/metabolism*
;
Synaptic Transmission/physiology*
;
Ion Channels/metabolism*
;
Hormones/metabolism*
3.BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models.
Beibei JIANG ; Tong ZHANG ; Minjuan DENG ; Wei JIN ; Yuan HONG ; Xiaotong CHEN ; Xin CHEN ; Jing WANG ; Hongjia HOU ; Yajuan GAO ; Wenfeng GONG ; Xing WANG ; Haiying LI ; Xiaosui ZHOU ; Yingcai FENG ; Bo ZHANG ; Bin JIANG ; Xueping LU ; Lijie ZHANG ; Yang LI ; Weiwei SONG ; Hanzi SUN ; Zuobai WANG ; Xiaomin SONG ; Zhirong SHEN ; Xuesong LIU ; Kang LI ; Lai WANG ; Ye LIU
Frontiers of Medicine 2023;17(6):1170-1185
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
Mice
;
Animals
;
Receptors, Tumor Necrosis Factor/physiology*
;
Receptors, OX40
;
Membrane Glycoproteins
;
Ligands
;
Antibodies, Monoclonal/pharmacology*
;
Antineoplastic Agents/pharmacology*
4.The expression and function of PD-L1 in CD133(+) human liver cancer stem-like cells.
Yu Di BAI ; Mao Lin SHI ; Si Qi LI ; Xiao Li WANG ; Jing Jing PENG ; Dai Jun ZHOU ; Fei Fan SUN ; Hua LI ; Chao WANG ; Min DU ; Tao ZHANG ; Dong LI
Chinese Journal of Oncology 2023;45(2):117-128
Objective: To investigate the expression of programmed death protein-ligand 1 (PD-L1) in liver cancer stem-like cells (LCSLC) and its effect on the characteristics of tumor stem cells and tumor biological function, to explore the upstream signaling pathway regulating PD-L1 expression in LCSLC and the downstream molecular mechanism of PD-L1 regulating stem cell characteristics, also tumor biological functions. Methods: HepG2 was cultured by sphere-formating method to obtain LCSLC. The expressions of CD133 and other stemness markers were detected by flow cytometry, western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were used to detect the expressions of stemness markers and PD-L1. The biological functions of the LCSLC were tested by cell function assays, to confirm that the LCSLC has the characteristics of tumor stem cells. LCSLC was treated with cell signaling pathway inhibitors to identify relevant upstream signaling pathways mediating PD-L1 expression changes. The expression of PD-L1 in LCSLC was down regulated by small interfering RNA (siRNA), the expression of stem cell markers, tumor biological functions of LCSLC, and the changes of cell signaling pathways were detected. Results: Compared with HepG2 cells, the expression rate of CD133 in LCSLC was upregulated [(92.78±6.91)% and (1.40±1.77)%, P<0.001], the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were also higher than those in HepG2 cells (P<0.05), the number of sphere-formating cells increased on day 7 [(395.30±54.05) and (124.70±19.30), P=0.001], cell migration rate increased [(35.41±6.78)% and (10.89±4.34)%, P=0.006], the number of transmembrane cells increased [(75.77±10.85) and (20.00±7.94), P=0.002], the number of cloned cells increased [(120.00±29.51) and (62.67±16.77), P=0.043]. Cell cycle experiments showed that LCSLC had significantly more cells in the G(0)/G(1) phase than those in HepG2 [(54.89±3.27) and (32.36±1.50), P<0.001]. The tumor formation experiment of mice showed that the weight of transplanted tumor in LCSLC group was (1.32±0.17)g, the volume is (1 779.0±200.2) mm(3), were higher than those of HepG2 cell [(0.31±0.06)g and (645.6±154.9)mm(3), P<0.001]. The expression level of PD-L1 protein in LCSLC was 1.88±0.52 and mRNA expression level was 2.53±0.62, both of which were higher than those of HepG2 cells (P<0.05). The expression levels of phosphorylation signal transduction and transcription activation factor 3 (p-STAT3) and p-Akt in LCSLC were higher than those in HepG2 cells (P<0.05). After the expression of p-STAT3 and p-Akt was down-regulated by inhibitor treatment, the expression of PD-L1 was also down-regulated (P<0.05). In contrast, the expression level of phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) in LCSLC was lower than that in HepG2 cells (P<0.01), there was no significant change in PD-L1 expression after down-regulated by inhibitor treatment (P>0.05). After the expression of PD-L1 was knockdown by siRNA, the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were decreased compared with those of siRNA-negative control (NC) group (P<0.05). The number of sphere-formating cells decreased [(45.33±12.01) and (282.00±29.21), P<0.001], the cell migration rate was lower than that in siRNA-NC group [(20.86±2.74)% and (46.73±15.43)%, P=0.046], the number of transmembrane cells decreased [(39.67±1.53) and (102.70±11.59), P=0.001], the number of cloned cells decreased [(57.67±14.57) and (120.70±15.04), P=0.007], the number of cells in G(0)/G(1) phase decreased [(37.68±2.51) and (57.27±0.92), P<0.001], the number of cells in S phase was more than that in siRNA-NC group [(30.78±0.52) and (15.52±0.83), P<0.001]. Tumor formation in mice showed that the tumor weight of shRNA-PD-L1 group was (0.47±0.12)g, the volume is (761.3±221.4)mm(3), were lower than those of shRNA-NC group [(1.57±0.45)g and (1 829.0±218.3)mm(3), P<0.001]. Meanwhile, the expression levels of p-STAT3 and p-Akt in siRNA-PD-L1 group were decreased (P<0.05), while the expression levels of p-ERK1/2 and β-catenin did not change significantly (P>0.05). Conclusion: Elevated PD-L1 expression in CD133(+) LCSLC is crucial to maintain stemness and promotes the tumor biological function of LCSLC.
Humans
;
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
B7-H1 Antigen/metabolism*
;
Ligands
;
Liver Neoplasms/pathology*
;
RNA, Small Interfering/metabolism*
;
Neoplastic Stem Cells/physiology*
;
Cell Line, Tumor
;
Cell Proliferation
5.Identification of senescence-related molecular subtypes and key genes for prostate cancer.
De-Chao FENG ; Wei-Zhen ZHU ; Xu SHI ; Qiao XIONG ; Jia YOU ; Qiang WEI ; Lu YANG
Asian Journal of Andrology 2023;25(2):223-229
We identified distinct senescence-related molecular subtypes and critical genes among prostate cancer (PCa) patients undergoing radical prostatectomy (RP) or radical radiotherapy (RT). We conducted all analyses using R software and its suitable packages. Twelve genes, namely, secreted frizzled-related protein 4 (SFRP4), DNA topoisomerase II alpha (TOP2A), pleiotrophin (PTN), family with sequence similarity 107 member A (FAM107A), C-X-C motif chemokine ligand 14 (CXCL14), prostate androgen-regulated mucin-like protein 1 (PARM1), leucine zipper protein 2 (LUZP2), cluster of differentiation 38 (CD38), cartilage oligomeric matrix protein (COMP), vestigial-like family member 3 (VGLL3), apolipoprotein E (APOE), and aldehyde dehydrogenase 2 family member (ALDH2), were eventually used to subtype PCa patients from The Cancer Genome Atlas (TCGA) database and GSE116918, and the molecular subtypes showed good correlations with clinical features. In terms of the tumor immune environment (TME) analysis, compared with cluster 1, cancer-associated fibroblasts (CAFs) scored significantly higher, while endothelial cells scored lower in cluster 2 in TCGA database. There was a statistically significant correlation between both CAFs and endothelial cells with biochemical recurrence (BCR)-free survival for PCa patients undergoing RP. For the GSE116918 database, cluster 2 had significantly lower levels of CAFs and tumor purity and higher levels of stromal, immune, and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) scores than cluster 1; in addition, patients with high levels of CAFs, stromal scores, immune scores, and ESTIMATE scores and low levels of tumor purity tended to suffer from BCR. Based on the median of differentially expressed checkpoints, high expression of CD96, hepatitis A virus cellular receptor 2 (HAVCR2), and neuropilin 1 (NRP1) in GSE116918 and high expression of CD160 and tumor necrosis factor (ligand) superfamily member 18 (TNFSF18) in TCGA database were associated with a significantly higher risk of BCR than their counterparts. In conclusion, we first constructed distinct molecular subtypes and critical genes for PCa patients undergoing RP or RT from the fresh perspective of senescence.
Male
;
Humans
;
Endothelial Cells
;
Ligands
;
Prostatic Neoplasms/pathology*
;
Prostate/pathology*
;
Prostatectomy
;
Aldehyde Dehydrogenase, Mitochondrial
;
DNA-Binding Proteins
;
Transcription Factors
6.Role of CD4+NKG2D+ T cells in the disease activity of juvenile idiopathic arthritis.
Jun-Yan WANG ; Xiao-Ping ZHU ; Yu ZHANG ; Chong LUO ; Xue-Mei TANG ; Juan ZHOU
Chinese Journal of Contemporary Pediatrics 2023;25(2):166-171
OBJECTIVES:
To study the expression levels of CD4+NKG2D+ T cells and NKG2D soluble ligands, the soluble MHC class I chain-related molecules A and B (sMICA/sMICB) in the active stage and stable stage of juvenile idiopathic arthritis (JIA) and their role in the disease activity of JIA.
METHODS:
Nineteen children with systemic JIA and 20 children with articular JIA who were diagnosed in Children's Hospital of Chongqing Medical University from November 2019 to December 2021 were enrolled in this prospective study. Six healthy children were enrolled as the control group. After peripheral blood samples were collected, ELISA was used to measure the levels of sMICA and sMICB, and flow cytometry was used to measure the percentage of CD4+NKG2D+ T cells. Systemic Juvenile Arthritis Disease Activity Score-27 (sJADAS-27)/Juvenile Arthritis Disease Activity Score-27 (JADAS-27) was used to evaluate the disease activity in children with JIA. The Pearson correlation analysis and the receiver operating characteristic (ROC) curve were used to assess the role of CD4+NKG2D+ T cells, sMICA and sMICB in the disease activity of JIA.
RESULTS:
The active systemic JIA and active articular JIA groups had a significant increase in the percentage of CD4+NKG2D+ T cells compared with the control group and their corresponding inactive JIA group (P<0.05). The JIA groups had significantly higher levels of sMICA and sMICB than the control group (P<0.05), and the active articular JIA group had a significantly higher level of sMICB than the stable articular JIA group (P<0.05). In the children with JIA, the percentage of CD4+NKG2D+ T cells and the levels of sMICA and sMICB were positively correlated with sJADAS-27/JADAS-27 disease activity scores (P<0.05). The ROC curve analysis showed that sMICB had an area under the curve of 0.755 in evaluating the disease activity of JIA, with a specificity of 0.90 and a sensitivity of 0.64.
CONCLUSIONS
The percentage of CD4+NKG2D+ T cells and the levels of sMICA and sMICB increase in children with JIA compared with healthy children and are positively correlated with the disease activity of JIA, suggesting that CD4+NKG2D+ T cells and NKG2D ligands can be used as potential biomarkers for evaluating the disease activity of JIA.
Child
;
Humans
;
Arthritis, Juvenile/pathology*
;
Ligands
;
NK Cell Lectin-Like Receptor Subfamily K
;
Prospective Studies
;
T-Lymphocytes/pathology*
7.Consistency comparison of programmed cell death 1-ligand 1 in different immuno-histochemical staining methods.
Dong LI ; Ji Ting DI ; Yan XIONG
Journal of Peking University(Health Sciences) 2023;55(2):339-342
OBJECTIVE:
To compare the consistency of programmed cell death 1-ligand 1 (PD-L1, clone E1L3N, 22C3, SP263) in different immunohistochemical staining methods.
METHODS:
The first step was to select the optimal process: The PD-L1(clone E1L3N) antibody recommended process, self-built process ①, self-built process ② and self-built process ③ were used to perform immunohistochemical staining in 5 cases of tonsil tissue. The quality of all slides was scored by expert pathologists (0-6 points). The process with the highest score was selected. The second step was to compare the consistency between the optimal procedure and the two standard procedures. Thirty-two cases of lung non-small cell carcinoma diagnosed by pathology in Peking University First Hospital in the past two years were randomly selected. The 32 cases were stained in parallel with the SP263 and 22C3 standard procedures, and all stained slides were scored by specialized pathologists for tumor proportion score (TPS). The scoring results were grouped according to < 1%, ≥1% to < 10%, ≥10% to < 50%, and ≥50%. The consistency of PD-L1 detection antibody clone E1L3N and 22C3, E1L3N and SP263 staining results was analyzed.
RESULTS:
Tonsil stained slides scores (0-6 points) were as follows: The recommended protocol was 5, 5, 5, 5 and 5. The self-built process ① was 5, 6, 6, 5 and 6. The self-built process ② was 4, 4, 4, 4 and 4.The self-built process ③ was 3, 3, 3, 3 and 3. The self-built process ① was the best with the highest score. The TPSs of 32 non small cell lung carcinoma (NSCLC) cases were as follows: Of self-built process ①, 6 cases were lower than 1%, 5 cases were from 1% to 10%, 10 cases were from 10% to 50%, and 11 cases were higher than 50%; of 22C3 standard procedure, 5 cases were lower than 1%, 3 cases were from 1% to 10%, 13 cases were from 10% to 50%, 11 cases were higher than 50%; of SP263 standard procedure, 7 cases were lower than 1%, 4 cases were from 1% to 10%, 11 cases were from 10% to 50%, 10 cases were higher than 50%. The results of the consistency test were as follows: The κ value for self-built process ① and 22C3 standard procedure was 0.736 (P < 0.001), the agreement was good; the κ value for self-built process ① and SP263 standard procedure was 0.914 (P < 0.001), the agreement was very good.
CONCLUSION
The immunostaining using PD-L1(E1L3N) with validated self-built staining protocol ① by Ventana Benchmark GX platform can obtain high quality of slides, and the TPSs based on these slides are in good agreement with 22C3 and SP263 standard procedures.
Humans
;
Carcinoma, Non-Small-Cell Lung
;
Lung Neoplasms/pathology*
;
Immunohistochemistry
;
B7-H1 Antigen/metabolism*
;
Ligands
;
Antibodies
;
Staining and Labeling
;
Apoptosis
8.Single-cell RNA sequencing reveals the transcriptomic landscape of kidneys in patients with ischemic acute kidney injury.
Rong TANG ; Peng JIN ; Chanjuan SHEN ; Wei LIN ; Leilin YU ; Xueling HU ; Ting MENG ; Linlin ZHANG ; Ling PENG ; Xiangcheng XIAO ; Peter EGGENHUIZEN ; Joshua D OOI ; Xueqin WU ; Xiang DING ; Yong ZHONG
Chinese Medical Journal 2023;136(10):1177-1187
BACKGROUND:
Ischemic acute kidney injury (AKI) is a common syndrome associated with considerable mortality and healthcare costs. Up to now, the underlying pathogenesis of ischemic AKI remains incompletely understood, and specific strategies for early diagnosis and treatment of ischemic AKI are still lacking. Here, this study aimed to define the transcriptomic landscape of AKI patients through single-cell RNA sequencing (scRNA-seq) analysis in kidneys.
METHODS:
In this study, scRNA-seq technology was applied to kidneys from two ischemic AKI patients, and three human public scRNA-seq datasets were collected as controls. Differentially expressed genes (DEGs) and cell clusters of kidneys were determined. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as the ligand-receptor interaction between cells, were performed. We also validated several DEGs expression in kidneys from human ischemic AKI and ischemia/reperfusion (I/R) injury induced AKI mice through immunohistochemistry staining.
RESULTS:
15 distinct cell clusters were determined in kidney from subjects of ischemic AKI and control. The injured proximal tubules (PT) displayed a proapoptotic and proinflammatory phenotype. PT cells of ischemic AKI had up-regulation of novel pro-apoptotic genes including USP47 , RASSF4 , EBAG9 , IER3 , SASH1 , SEPTIN7 , and NUB1 , which have not been reported in ischemic AKI previously. Several hub genes were validated in kidneys from human AKI and renal I/R injury mice, respectively. Furthermore, PT highly expressed DEGs enriched in endoplasmic reticulum stress, autophagy, and retinoic acid-inducible gene I (RIG-I) signaling. DEGs overexpressed in other tubular cells were primarily enriched in nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, estrogen signaling, interleukin (IL)-12 signaling, and IL-17 signaling. Overexpressed genes in kidney-resident immune cells including macrophages, natural killer T (NKT) cells, monocytes, and dendritic cells were associated with leukocyte activation, chemotaxis, cell adhesion, and complement activation. In addition, the ligand-receptor interactions analysis revealed prominent communications between macrophages and monocytes with other cells in the process of ischemic AKI.
CONCLUSION
Together, this study reveals distinct cell-specific transcriptomic atlas of kidney in ischemic AKI patients, altered signaling pathways, and potential cell-cell crosstalk in the development of AKI. These data reveal new insights into the pathogenesis and potential therapeutic strategies in ischemic AKI.
Humans
;
Mice
;
Animals
;
Transcriptome/genetics*
;
Ligands
;
Kidney/metabolism*
;
Acute Kidney Injury/metabolism*
;
Ischemia/metabolism*
;
Reperfusion Injury/metabolism*
;
Sequence Analysis, RNA
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Tumor Suppressor Proteins/metabolism*
9.Hypoxia promotes lipopolysaccharide-induced CXCL10 expression in microglia.
Zi-Bi SHI ; Yue HU ; Qian-Qian RUAN ; Ming FAN ; Ming ZHAO ; Ling-Ling ZHU
Acta Physiologica Sinica 2023;75(2):153-159
This study was aimed to investigate the effect of hypoxia on lipopolysaccharide (LPS)-induced CXC-chemokine ligand-10 (CXCL10) expression and the underlying mechanism. C57BL/6J mice were randomly divided into control, hypoxia, LPS, and hypoxia combined with LPS groups. The LPS group was intraperitoneally injected with 0.5 mg/kg LPS, and the hypoxia group was placed in a hypobaric hypoxia chamber (simulated altitude of 6 000 m). The serum and hippocampal tissue samples were collected after 6 h of the treatment. The levels of CXCL10 in the serum and hippocampal tissue of mice were detected by ELISA. The microglia cell line BV2 and primary microglia were stimulated with hypoxia (1% O2) and/or LPS (100 ng/mL) for 6 h. The mRNA expression level of CXCL10 and its content in culture supernatant were detected by real-time quantitative PCR and ELISA, respectively. The phosphorylation levels of nuclear factor κB (NF-κB) signaling pathway-related proteins, p65 and IκBα, were detected by Western blot. Moreover, after NF-κB signaling pathway being blocked with a small molecular compound, PDTC, CXCL10 mRNA expression level was detected in the BV2 cells. The results showed that in the LPS-induced mouse inflammatory model, hypoxia treatment could promote LPS-induced up-regulation of CXCL10 in both serum and hippocampus. Compared with the cells treated with LPS alone, the expression of CXCL10 mRNA and the content of CXCL10 in the culture supernatant of BV2 cells treated with hypoxia combined with LPS were significantly increased. The CXCL10 mRNA level of primary microglial cells treated with hypoxia combined with LPS was significantly up-regulated. Compared with the cells treated with hypoxia or LPS alone, the phosphorylation levels of p65 and IκBα in the BV2 cells treated with hypoxia combined with LPS were significantly increased. PDTC blocked the induction of CXCL10 gene expression by LPS in the BV2 cells. These results suggest that hypoxia promotes LPS-induced expression of CXCL10 in both animal and cell models, and NF-κB signaling pathway plays an important role in this process.
Animals
;
Mice
;
Chemokines, CXC/pharmacology*
;
Hypoxia
;
Ligands
;
Lipopolysaccharides/pharmacology*
;
Mice, Inbred C57BL
;
Microglia/metabolism*
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/pharmacology*
;
RNA, Messenger/metabolism*
10.Gene clone and functional identification of sterol glycosyltransferases from Paris polyphylla var. yunnanensis.
Min HE ; Si-Yuan GUO ; Yan YIN ; Chi ZHANG ; Xia-Nan ZHANG
China Journal of Chinese Materia Medica 2023;48(14):3774-3785
In this study, the authors cloned a glycosyltransferase gene PpUGT2 from Paris polyphylla var. yunnanensis with the ORF length of 1 773 bp and encoding 590 amino acids. The phylogenetic tree revealed that PpUGT2 belonged to the UGT80A subfamily and was named as UGT80A49 by the UDP-glycosyltransferase(UGT) Nomenclature Committee. The expression vector pET28a-PpUGT2 was constructed, and enzyme catalytic reaction in vitro was conducted via inducing protein expression and extraction. With UDP-glucose as sugar donor and diosgenin and pennogenin as substrates, the protein was found with the ability to catalyze the C-3 hydroxyl β-glycosylation of diosgenin and pennogenin. To further explore its catalytic characteristic, 15 substrates including steroids and triterpenes were selected and PpUGT2 showed its activity towards the C-17 position of sterol testosterone with UDP-glucose as sugar donor. Homology modelling and molecule docking of PpUGT2 with substrates predicted the key residues interacting with ligands. The re-levant residues of PpUGT2-ligand binding model were scanned to calculate the corresponding mutants, and the optimized mutants were obtained according to the changes in binding affinity of the ligand with protein and the surrounding residues within 5.0 Å of ligands, which had reference value for design of the mutants. This study laid a foundation for further exploring the biosynthetic pathway of polyphyllin as well as the structure of sterol glycosyltransferases.
Ligands
;
Glycosyltransferases/genetics*
;
Sterols
;
Phylogeny
;
Ascomycota
;
Liliaceae/chemistry*
;
Melanthiaceae
;
Diosgenin
;
Sugars
;
Glucose
;
Uridine Diphosphate

Result Analysis
Print
Save
E-mail