1.Effect of Wenshen Tongluo Zhitong formula on mouse H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system
Shijie ZHOU ; Muzhe LI ; Li YUN ; Tianchi ZHANG ; Yuanyuan NIU ; Yihua ZHU ; Qinfeng ZHOU ; Yang GUO ; Yong MA ; Lining WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):8-15
BACKGROUND:Bone relies on the close connection between blood vessels and bone cells to maintain its integrity.Bones are in a physiologically hypoxic environment.Therefore,the study of angiogenesis and osteogenesis in hypoxic environment is closer to the microenvironment in vivo. OBJECTIVE:To explore the influence of Wenshen Tongluo Zhitong(WSTLZT)formula on H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system in hypoxia environment and its related mechanism. METHODS:Enzyme digestion method and flow sorting technique were used to isolate and identify H-type bone microvascular endothelial cells.Mouse bone marrow mesenchymal stem cells were isolated and obtained by bone marrow adhesion method.H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell hypoxic co-culture system was established using Transwell chamber and anoxic culture workstation.WSTLZT formula powder was used to intervene in each group at a mass concentration of 50 and 100 μg/mL.The angiogenic function of H-type bone microvascular endothelial cells in the co-culture system was evaluated by scratch migration test and tube formation test.The osteogenic differentiation ability of bone marrow mesenchymal stem cells in the co-cultured system was evaluated by alkaline phosphatase staining and alizarin red staining.The protein and mRNA expression changes of PDGF/PI3K/AKT signal axis related molecules in H-type bone microvascular endothelial cells in the co-cultured system were detected by Western Blotting and q-PCR,respectively. RESULTS AND CONCLUSION:(1)Compared with the normal oxygen group,the scratch mobility and new blood vessel length of H-type bone microvascular endothelial cells were significantly higher(P<0.05);the osteogenic differentiation capacity of bone marrow mesenchymal stem cells was higher(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular protein and mRNA increased(P<0.05)in the hypoxia group.(2)Compared with the hypoxia group,scratch mobility and new blood vessel length were significantly increased in the H-type bone microvascular endothelial cells(P<0.05);bone marrow mesenchymal stem cells had stronger osteogenic function(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular proteins and mRNA further increased(P<0.05)after treatment with different dose concentrations of WSTLZT formula.These findings conclude that H-type angiogenesis and osteogenesis under hypoxia may be related to the PDGF/PI3K/AKT signaling axis,and WSTLZT formula may promote H-type vasculo-dependent bone formation by activating the PDGF/PI3K/AKT signaling axis,thereby preventing and treating osteoporosis.
2.Lnx1 expression in cortical neurons of rats with traumatic brain injury and mechanisms involved in secondary brain injury
Yanxia MA ; Yanwei YANG ; Yuhang MA ; Di LI ; Xiaoyan WANG ; Mingming ZOU ; Shanwen WEI
Chinese Journal of Tissue Engineering Research 2025;29(1):24-30
BACKGROUND:Apoptosis plays an important role in secondary brain injury.Therefore,to explore the pathophysiological mechanism of promoting nerve cell survival after traumatic brain injury provides a new direction and theoretical basis for the prevention and treatment of traumatic brain injury. OBJECTIVE:To explore the expression changes of Lnx1 molecule in mammalian cortical neurons after brain injury and the possible mechanism involved in secondary brain injury. METHODS:Eighty adult SD rats were divided into 20 male and 20 female mice in sham operation group and 20 male and 20 female mice in traumatic brain injury group.The traumatic brain injury rat model was established by heavy falling method.At 6,12,24,48,and 72 hours after brain injury,the expression of related molecules in damaged cortical neurons was analyzed by RT-qPCR,western blot assay,and immunofluorescence staining. RESULTS AND CONCLUSION:(1)The brain tissue of traumatic brain injury group was bleeding and obvious tissue injury could be observed.Water content of brain tissue increased after traumatic brain injury.(2)Compared with the sham operation group,the expression of Lnx1 in cortical neurons after traumatic brain injury increased significantly at 24 hours after injury.(3)After traumatic brain injury,the expression of PBK and BCR protein decreased,and the pro-survival factor ctgf increased.(4)These findings suggest that after traumatic brain injury,the expression of Lnx1 is up-regulated in neurons,which may be due to the decrease of the expression of its target molecules PBK and BCR,and further promote the expression of living factor ctgf,which has a protective effect on the damaged neurons.
3.Adipose mesenchymal stem cell-derived exosome attenuates radiation-induced oral mucositis
Yang LI ; Lili FU ; Jiantang YANG
Chinese Journal of Tissue Engineering Research 2025;29(1):31-37
BACKGROUND:Radiotherapy for head and neck tumors is very likely to cause radiation-induced oral mucositis,which seriously affects the health of patients and the treatment plan of tumors.Mesenchymal stem cells have shown therapeutic potential in many diseases,and exosomes are one of the important factors for their function.At present,there is no application of adipose mesenchymal stem cell-derived exosomes in the study of radiation-induced oral mucositis. OBJECTIVE:To investigate the role of adipose mesenchymal stem cell-derived exosomes in radiation-induced oral mucositis. METHODS:Adipose mesenchymal stem cells and adipose mesenchymal stem cell-derived exosomes were extracted and identified.In vitro model of radiation-induced oral mucositis was induced by radiating oral mucosal epithelial cells with 3 Gy X-ray.Adipose mesenchymal stem cells or adipose mesenchymal stem cell-derived exosomes were pretreated for 48 hours before modeling.The proliferation capacity of oral mucosal epithelial cells was detected by EdU assay and clonal formation assay.A mouse model of radiation-induced oral mucositis was constructed through 3 Gy X-ray radiation.Adipose mesenchymal stem cells and adipose mesenchymal stem cell-derived exosomes were injected into the tail vein of radiation-induced oral mucositis mice.Hematoxylin-eosin staining and immunohistochemistry were used to evaluate the inflammatory changes of oral mucosal epithelial tissue. RESULTS AND CONCLUSION:(1)Compared with the control group,both adipose mesenchymal stem cells and adipose mesenchymal stem cell-derived exosomes promoted the formation of oral epithelial cell clones and increased the positive rate of EdU in oral epithelial cells.(2)Both adipose mesenchymal stem cells and adipose mesenchymal stem cell-derived exosomes alleviated the inflammation of oral mucosal epithelium of irradiated mice;CD45 positive cells decreased and PCNA positive cells increased in oral mucosal epithelium.It is concluded that adipose mesenchymal stem cell-derived exosomes promote the proliferation of oral mucosal epithelial cells and release oral mucosal inflammation in mice with radiation-induced oral mucositis.
4.Osteogenic ability and autophagy level between normal and inflammatory periodontal ligament stem cells
Jiaqi MAO ; Liru ZHAO ; Dongru YANG ; Yongqing HU ; Bowen DAI ; Shujuan LI
Chinese Journal of Tissue Engineering Research 2025;29(1):74-79
BACKGROUND:Inflammation affects the osteogenic differentiation of periodontal ligament stem cells,and the osteogenic ability and autophagy level of periodontal ligament stem cells are closely related.However,there are no relevant reports on whether inflammation affects the osteogenic ability and autophagy level of periodontal ligament stem cells at different stages of osteogenic differentiation. OBJECTIVE:To explore alkaline phosphatase expression and autophagy periodontal ligament stem cells levels in periodontitis and normal conditions. METHODS:Periodontal ligament stem cells from normal and periodontitis patients were isolated and cultured,and underwent Vimentin,pan-CK,and Stro-1 fluorescence staining.At 3,7,and 14 days of osteogenic differentiation,western blot assay was used to detect the protein expression levels of alkaline phosphatase,LC3B,Beclin1,and ATG5 in normal and inflammatory periodontal ligament stem cells.The mRNA expression levels of alkaline phosphatase,bone sialoprotein,osteocalcin,Runx2,LC3B,Beclin1,and ATG5 were detected by real-time PCR. RESULTS AND CONCLUSION:(1)Stro-1 was positive,Vimentin was positive,and pan CK was negative in periodontal ligament stem cells.(2)At 3,7,and 14 days after osteogenic differentiation,compared with normal periodontal ligament stem cells,the mineralization nodules formed by periodontal ligament stem cells from inflammatory sources were significantly reduced(P<0.01);the expression of alkaline phosphatase protein and mRNA was significantly lower(P<0.05);the mRNA expression levels of bone sialoprotein,osteocalcin,and Runx2 were significantly decreased(P<0.05).(3)At 7 and 14 days after osteogenic differentiation,compared with normal periodontal ligament stem cells,the expression levels of ATG5,LC3B,and Beclin1 proteins and mRNA of periodontal ligament stem cells were downregulated(P<0.05).These findings suggest that inflammation reduces the activity of periodontal ligament stem cells in mineralizing nodule formation and the expression of alkaline phosphatase and weakens the autophagy potential of periodontal ligament stem cells at 7 and 14 days after osteogenic differentiation.
5.Mechanism of Shaoyaotang in Modulating MDSCs-related Immunosuppressive Microenvironment in Prevention and Treatment of Colitis-associated Carcinogenesis
Xue CHEN ; Chenglei WANG ; Bingwei YANG ; Haoyu ZHAI ; Ying WU ; Weidong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):10-19
ObjectiveTo explore the mechanism of Shaoyaotang in the prevention and treatment of colitis-associated carcinogenesis (CAC) based on myeloid-derived suppressor cells (MDSCs)-related immunosuppressive microenvironment. MethodsA total of 140 six-week-old SPF FVB male mice were randomly divided into seven groups: Blank group, Shaoyaotang without model group (7.12 g·kg-1), model group, sulfasalazine group (0.52 g·kg-1), Shaoyaotang low-dose group (3.56 g·kg-1), Shaoyaotang medium-dose group (7.12 g·kg-1) and Shaoyaotang high-dose group (14.24 g·kg-1), with 20 mice in each group. The blank control group and the Shaoyaotang without model group received a single intraperitoneal injection of physiological saline (10 mg·kg-1), while the other five groups were given a single intraperitoneal injection of azoxymethane (AOM) (10 mg·kg-1). After 1 week, the mice were given drinking water containing 2% dextran sulfate sodium (DSS) for 1 week, followed by normal drinking water for 2 weeks. This cycle was repeated three times over a total period of 14 weeks to establish the CAC mouse model. Each group was administered gavage once daily for 2 weeks starting on the 14th day of the experiment, followed by three times a week until the end of the experiment. The body weight of the mice was recorded weekly. Mice were sacrificed on the 28th and 98th days of the experiment. After dissection, the colon length, colon weight, spleen weight, tumor size, and tumor number were measured. Hematoxylin and eosin (HE) staining was used to assess the pathological morphology of colon tumor tissue. Flow cytometry was used to detect MDSCs, regulatory T cells (Tregs), CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ T cell ratio in the spleen. Immunohistochemistry was used to detect the expression levels of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated nuclear factor-κB (p-NF-κB), and hypoxia-inducible factor 1α (HIF-1α) in the colon tissue. ResultsOn day 14, compared with the blank group, the body weight of the model group was significantly reduced (P<0.01), reaching its lowest point on day 28 (23.39 ± 0.95 ) g. On days 28 and 98, compared with the blank group, the colon length in the model group was significantly shortened (P<0.01), the colon index significantly increased (P<0.01), the spleen index significantly increased (P<0.01), and the tumor load significantly increased (P<0.01). HE staining showed that in the model group, tumor cells, a large number of inflammatory cell infiltrates, goblet cell disappearance, and crypt loss were observed. In each dose group of Shaoyaotang, the damage to the colonic mucosa, inflammatory cell infiltration, and crypt structure destruction were alleviated. Compared with the model group, the body weight of mice in each dose group of Shaoyaotang increased. On day 98, the colon length was significantly increased (P<0.01), the colon index significantly decreased (P<0.01), the spleen index significantly decreased (P<0.01), and the tumor burden significantly decreased (P<0.01) in each Shaoyaotang dose group. On days 28 and 98, MDSCs and Tregs in the spleen of the medium- and high-dose Shaoyaotang groups were significantly reduced (P<0.01), while CD4+ T cells and the CD4+/CD8+ T cell ratio were significantly increased (P<0.01). The proportion of CD8+ T cells in the spleen and the expression levels of PD-1 and PD-L1 in the colon tissues of mice in each Shaoyaotang dose group were significantly increased to varying degrees (P<0.05, P<0.01). On days 28 and 98, the expression of p-AMPK-positive cells in the colon tissue of the medium- and high-dose Shaoyaotang groups was significantly increased (P<0.01), while the expression of p-NF-κB and HIF-1α was significantly reduced (P<0.01). ConclusionShaoyaotang can regulate MDSC recruitment and modulate the immune function of T lymphocyte subsets to inhibit the occurrence and development of AOM/DSS-induced CAC in mice. The mechanism may be related to the activation of the AMPK/NF-κB/HIF-1α pathway.
6.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.
7.Exploring Multi-target Effect of Erzhiwan on Improving Myocardial Injury in Ovariectomized Mice Based on Non-targeted Metabolomics
Ying YANG ; Jing HU ; Pei LI ; Ruyuan ZHU ; Zhiguo ZHANG ; Haixia LIU ; Yanjing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):74-84
ObjectiveTo explore the target of Erzhiwan in reducing myocardial injury in ovariectomized mice through non-targeted myocardial metabolomics combined with experimental verification. MethodsOvariectomized mouse model was selected, 40 female C57BL/6 mice were randomly divided into sham operation group, model group, estrogen group(estradiol valerate, 1.3×10-4 g·kg-1), Erzhiwan low and high dose groups(3.12, 9.36 g·kg-1), with 8 mice in each group. Each administration group was given the corresponding dose of Erzhiwan by gavage, and the sham operation group and model group were given equal volume of distilled water by gavage for 12 weeks. Echocardiography was used to detect cardiac function, hematoxylin-eosin(HE) staining was used to observe myocardial morphological changes, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of estrogen, N-terminal pro-brain natriuretic peptide(NT-proBNP), hypersensitive troponin T(hs-TnT), total cholesterol(TC), triglyceride(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), interleukin(IL)-1β, IL-18 and tumor necrosis factor-α(TNF-α). The non-targeted metabolomics of mouse myocardium were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites and corresponding metabolic pathways were obtained. The mRNA expression levels of phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in mouse myocardial tissues were detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression levels of PI3K, Akt, phosphorylated(p)-Akt were detected by Western blot. ResultsCompared with the sham operation group, the model group showed abnormal cardiac function, increased myocardial fiber space, cardiomyocyte atrophy, sarcoplasmic aggregation, and occasional dissolution or rupture of muscle fiber, the level of estrogen in the serum was decreased, the levels of NT-proBNP, hs-TnT, IL-1β, IL-18, TNF-α, TG, TC and LDL-C were increased, and the level of HDL-C was decreased(P<0.01). Compared with the model group, Erzhiwan could increase the level of estrogen, improve the abnormal cardiac function, reduce the pathological injury of myocardial tissue, decrease the levels of myocardial injury markers(NT-proBNP, hs-TnT) and inflammatory factors(IL-1β, IL-18, TNF-α), decrease the levels of TG, TC, LDL-C, and increased the level of HDL-C(P<0.01). The results of non-targeted myocardial metabolomics showed that 31 of the 162 differential metabolites between the model group and sham operation group were significantly adjusted after administration of Erzhiwan, which were mainly glycerol phospholipid metabolites. Pathway enrichment results showed that Erzhiwan mainly affected glycerophospholipid metabolic pathway, PI3K-Akt pathway, cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG) pathway and other metabolic pathways. Compared with the sham operation group, the levels of phosphatidylcholine(PC, 11 types) and phosphatidylethanolamine(PE, 5 types) in mouse myocardial tissue of the model group were increased(P<0.05, P<0.01), and the mRNA and protein expressions of PI3K and p-Akt were decreased(P<0.05, P<0.01). Compared with the model group, the levels of PC(11 types) and PE(5 types) were decreased(P<0.05, P<0.01) in myocardial tissue of Erzhiwan group, the mRNA and protein expressions of PI3K and p-Akt were elevated(P<0.01). ConclusionErzhiwan can alleviate the pathological injury of myocardium in ovariectomized mice, improve the abnormal cardiac function, improve lipid metabolism disorder, and reduce the levels of myocardial injury markers and inflammatory factors, which involves a number of signaling and metabolic pathways in the heart, among which glycerophospholipid metabolism pathway and PI3K/Akt pathway may have key roles.
8.Mechanism of Zuogui Jiangtang Jieyu Prescription Against Damage to Hippocampal Synaptic Microenvironment via Suppressing GluR2/Parkin Signal-mediated Mitophagy in Rats with Diabetes-related Depression
Jian LIU ; Lin LIU ; Xiaoyuan LIN ; Wei LI ; Yuhong WANG ; Hui YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):104-112
ObjectiveTo reveal the mechanism of Zuogui Jiangtang Jieyu prescription against damage to hippocampal synaptic microenvironment via suppressing glutamate receptor 2 (GluR2)/Parkin signal-mediated mitophagy in rats with diabetes-related depression (DD). MethodsEighty male SD rats underwent adaptive feeding for 5 days before the study. Ten rats were randomly assigned to the normal group. The model of DD rats was established with the rest by 2-week high-fat diet + streptozotocin (STZ) tail intravenous injection + 28 days of chronic unpredictable mild stress (CUMS) combined with isolation. The rats were randomly divided into a normal group, a model group, a GluR2 blocker group (5 μg·kg-1), a GluR2 agonist group (10 μg·kg-1), a metformin + fluoxetine group (0.18 g·kg-1 metformin + 1.8 mg·kg-1 fluoxetine), and high- and low-dose Zuogui Jiangtang Jieyu prescription groups (20.52 and 10.26 g·kg-1, respectively). The rats in the GluR2 blocker group and the GluR2 agonist group were continuously injected with CNQX and Cl-HIBO in the dentate gyrus of the hippocampus once a week starting from stress modeling, respectively, while the metformin + fluoxetine group and the high- and low-dose Zuogui Jiangtang Jieyu prescription groups were continuously given intragastric administration for 28 d at the same time of stress modeling. Depression-like behavior was evaluated by open field and forced swimming experiments. The levels of serum insulin and adenosine triphosphate (ATP) in hippocampus were detected by biochemical analysis. The levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The autophagosomes of hippocampal neurons were observed by transmission electron microscopy. The morphology and structure of dendrites and spines of hippocampal neurons were evaluated by Golgi staining. Western blot detected the expression levels of GluR2 and Parkin proteins in hippocampus. The expression levels of GluR2, Parkin, regulating synaptic membrane exocytosis protein 3 (RIMS3), and postsynaptic density protein 95 (PSD95) in the dentate gyrus of the hippocampus were detected by immunofluorescence. ResultsCompared with the normal group, the model group exhibited reduced total activity distance in the open field and increased immobility time in forced swimming (P<0.01), lowered levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.01), increased autophagosomes of hippocampal neurons, significantly damaged morphology and structure of dendrites and spines of hippocampal neurons, decreased expression levels of GluR2, RIMS3, and PSD95 in hippocampus, and an increased Parkin expression level (P<0.05, P<0.01). Compared with the model group, the GluR2 blocker group and the GluR2 agonist group showed aggravation and alleviation of the above abnormal changes, respectively (P<0.05, P<0.01). The above depression-like behavior was significantly improved in the high- and low-dose Zuogui Jiangtang Jieyu prescription groups to different degrees. Specifically, the two groups saw elevated levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.05, P<0.01), restrained increase in autophagosomes and damage to morphology and structure of dendrites and spines of hippocampal neurons, up-regulated protein expression levels of GluR2, RIMS3, and PSD95, and down-regulated Parkin expression level (P<0.05, P<0.01). ConclusionZuogui Jiangtong Jieyu prescription can ameliorate the mitophagy-mediated damage to hippocampal synaptic microenvironment in DD rats, the mechanism of which might be related to the regulation of GluR2/Parkin signaling pathway.
9.Effect of Yifei Jianpi Prescription on Lipopolysaccharide-induced Lung Immune Inflammatory Response in Rats Based on STAT1/IRF3 Pathway
Hongjuan YANG ; Yaru YANG ; Yujie YANG ; Zhongbo ZHU ; Quan MA ; Yanlin WU ; Hongmei LI ; Xuhui ZHANG ; Xiping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):146-155
ObjectiveTo observe the effect of Yifei Jianpi prescription on the of signal transducer and activator of transcription protein 1 (STAT1)/interferon regulatory factor 3 (IRF3) signaling pathway in a pneumonia model induced by lipopolysaccharide (LPS) and to explore the mechanism of Yifei Jianpi prescription in improving lung immune and inflammatory responses. MethodsSixty male SPF SD rats were used in this study. Ten rats were randomly assigned to the normal control group, and the remaining 50 were instilled with LPS in the trachea to establish a pneumonia model. After successful modeling, the rats were randomly divided into the model group, dexamethasone group (0.5 mg·kg-1), and Yifei Jianpi prescription high-dose (12 mg·kg-1), medium-dose (6 mg·kg-1), and low-dose (3 mg·kg-1) groups, with 10 rats in each group. Treatment was administered once daily, and the normal control and model groups received the same volume of normal saline. After 14 days, flow cytometry was used to detect the classification of whole blood lymphocytes. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of immunoglobulin G (IgG), immunoglobulin A (IgA), immunoglobulin M (IgM), and the content of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), interleukin-6 (IL-6), and interleukin-10 (IL-10) in alveolar lavage fluid (BALF). Hematoxylin-eosin (HE) staining was used to observe lung tissue pathology and score the damage. Thymus weight, spleen weight, and wet-to-dry weight ratio (W/D) were recorded. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of STAT1, IRF3, IL-6, and interferon-alpha (IFN-α) in lung tissues, while Western blot was performed to assess the protein expression of STAT1, IRF3, IL-6, and IFN-α. ResultsCompared with the normal control group, the model group showed significantly increased proportion of B lymphocytes in peripheral blood, decreased proportions of NK cells and CD4+/CD8+ (P<0.05, P<0.01), decreased serum levels of IgG and IgA, significantly increased IgM levels (P<0.01), significantly elevated content of TNF-α, IL-6, and IL-8 in BALF, and significantly decreased IL-10 levels (P<0.01). Lung tissue damage was evident, with significant increases in thymus and spleen weights and a higher W/D ratio (P<0.01). The mRNA and protein expression of STAT1, IRF3, IFN-α, and IL-6 in lung tissues was significantly upregulated (P<0.05,P<0.01). Compared with the model group, the Yifei Jianpi prescription groups showed significantly reduced proportions of B lymphocytes in peripheral blood, increased proportions of NK cells and CD4+/CD8+ ratios (P<0.05, P<0.01), significantly increased serum levels of IgG and IgA, significantly decreased IgM levels (P<0.05, P<0.01), significantly reduced levels of TNF-α, IL-6, and IL-8 in BALF, and significantly increased IL-10 levels (P<0.01). Lung tissue damage was alleviated, thymus and spleen weights were significantly reduced, and the W/D ratio was markedly decreased (P<0.01). The mRNA and protein expression of STAT1, IRF3, IFN-α, and IL-6 in lung tissues was significantly downregulated (P<0.05, P<0.01). ConclusionYifei Jianpi prescription can alleviate lung tissue damage and improve immune and inflammatory responses in LPS-induced pneumonia rats. The mechanism may be related to the inhibition of STAT1/IRF3 signaling pathway activation.
10.Research hotspot and evolution trend of ocular surface flora based on bibliometrics
Yang YANG ; Ting ZHANG ; Shuangle LI ; Wenzhai CAO
International Eye Science 2025;25(1):42-49
AIM: To analyze the current status, research hotspots, and development trends of international studies on ocular surface microbiota based on bibliometrics.METHODS: Leveraging the Web of Science database, we conducted a targeted literature search on ocular surface flora. The retrieved data were meticulously screened and weighted to enhance relevance. The bibliometric analysis delved into publication trends, authorship patterns, institutional collaborations, and pivotal research themes. Employing Cite Space software, we visually dissected the landscape of institutional and national partnerships, citation impact, keyword co-occurrences, keyword clustering dynamics, and the emergence of new research trends.RESULTS: A total of 3 884 publications were ultimately included, with an overall upward trend in the number of publications in the field of ocular surface microbiota from 2003 to 2023, with the most rapid growth occurring from 2019 to 2022. The top three regions/countries by publication volume are the United States(1 039 papers), China(570 papers), and India(302 papers). The top three authors by publication volume are Willcox Mark(48 papers), Sharma Savitri(33 papers), and Fleiszig Suzanne M.J(27 papers). The top three institutions by publication volume, all from the United States, are the University of California, L.V. Prasad Eye Institute, and Harvard University. The citation network map of the literature includes 801 nodes and 1 508 connections, with the most frequently cited document being Temporal Stability and Composition of the Ocular Surface Microbiome. The top 5 keywords by frequency of occurrence are, in order, keratitis, bacterial flora, identification, inflammation, and endophthalmitis. The keyword clustering analysis yielded a total of 8 clusters, which are specifically reflected in three aspects: ocular-related diseases, the relationship between ocular surface microbiota and ocular surface structures, and detection methods for ocular surface microbiota. The keyword with the highest burst strength is ciprofloxacin. Keywords that have emerged in recent years and continue to the present include diversity, gut microbiome, and ocular surface microbiome.CONCLUSION: Currently, the study of ocular surface microflora is gaining momentum globally, with a particular focus on the diversity of microflora, the composition of the core microbiome, and its impact on ocular diseases. In the future, research should concentrate on elucidating the functional metabolism of the ocular surface microflora and further investigate the causality and mechanisms by which changes in the ocular surface microflora are related to diseases.

Result Analysis
Print
Save
E-mail