1.Study on anti-atherosclerosis mechanism of blood components of Guanxin Qiwei tablets based on HPLC-Q-Exactive-MS/MS and network pharmacology
Yuan-hong LIAO ; Jing-kun LU ; Yan NIU ; Jun LI ; Ren BU ; Peng-peng ZHANG ; Yue KANG ; Yue-wu WANG
Acta Pharmaceutica Sinica 2025;60(2):449-458
The analysis presented here is based on the blood components of Guanxin Qiwei tablets, the key anti-atherosclerosis pathway of Guanxin Qiwei tablets was screened by network pharmacology, and the anti-atherosclerosis mechanism of Guanxin Qiwei tablets was clarified and verified by cell experiments. HPLC-Q-Exactive-MS/MS technique was used to analyze the components of Guanxin Qiwei tablets into blood, to determine the precise mass charge ratio of the compounds, and to conduct a comprehensive analysis of the components by using secondary mass spectrometry fragments and literature comparison. Finally, a total of 42 components of Guanxin Qiwei tablets into blood were identified. To better understand the interactions, we employed the Swiss Target Prediction database to predict the associated targets. Atherosclerosis (AS) disease targets were searched in disease databases Genecard, OMIM and Disgent, and 181 intersection targets of disease targets and component targets were obtained by Venny 2.1.0 software. Protein interactions were analyzed by String database. The 32 core targets were selected by Cytscape software. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in DAVID database. It was found that the anti-atherosclerosis pathways of Guanxin Qiwei tablets mainly include lipid metabolism and atherosclerosis and AGE-RAGE signaling pathway in diabetic complications and other signal pathways. The core targets and the core compounds were interlinked, and it was found that cryptotanshinone and tanshinone ⅡA in Guanxin Qiwei tablets were well bound to TNF, PPAR
2.The role of microglia activated by the deletion of immune checkpoint receptor CD200R1 gene in a mouse model of Parkinson's disease.
Jia-Li GUO ; Tao-Ying HUANG ; Zhen ZHANG ; Kun NIU ; Xarbat GONGBIKAI ; Xiao-Li GONG ; Xiao-Min WANG ; Ting ZHANG
Acta Physiologica Sinica 2025;77(1):13-24
The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1-/- mice. The primary microglia cells of wild-type and CD200R1-/- mice were cultured and treated with bacterial lipopolysaccharide (LPS). Microglia phagocytosis level was assessed by a fluorescent microsphere phagocytosis assay. PD mouse model was prepared by nigral stereotaxic injection of recombinant adeno-associated virus vector carrying human α-synuclein (α-syn). The changes in the motor behavior of the mice with both genotypes were evaluated by cylinder test, open field test, and rotarod test. Immunohistochemical staining was used to assess the loss of dopamine neurons in substantia nigra. Immunofluorescence staining was used to detect the expression level of CD68 (a key molecule involved in phagocytosis) in microglia. The results showed that CD200R1 deletion markedly enhanced LPS-induced phagocytosis in vitro by the microglial cells. In the mouse model of PD, CD200R1 deletion exacerbated motor behavior impairment and dopamine neuron loss in substantia nigra. Fluorescence intensity analysis results revealed a significant increase in CD68 expression in microglia located in the substantia nigra of CD200R1-/- mice. The above results suggest that CD200R1 deletion may further activates microglia by promoting microglial phagocytosis, leading to increased loss of the nigrostriatal dopamine neurons in the PD model mice. Therefore, targeting CD200R1 could potentially serve as a novel therapeutic target for the treatment of early-stage PD.
Animals
;
Microglia/physiology*
;
Mice
;
Phagocytosis
;
Parkinson Disease/genetics*
;
Disease Models, Animal
;
Receptors, Cell Surface/physiology*
;
Dopaminergic Neurons/pathology*
;
Antigens, CD/metabolism*
;
Gene Deletion
;
Substantia Nigra
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Cells, Cultured
;
Male
;
alpha-Synuclein
;
CD68 Molecule
;
Orexin Receptors
3.Epidemiological characteristics of respiratory syncytial virus infection in children in Hebei Province.
Xuan WANG ; Su-Kun LU ; Jian-Hua LIU ; Jin-Feng SHUAI ; Kun-Ling HUANG ; Bo NIU ; Li-Jie CAO ; Xiao-Wei CUI
Chinese Journal of Contemporary Pediatrics 2025;27(10):1199-1204
OBJECTIVES:
To study the epidemiological characteristics of respiratory syncytial virus (RSV) infection in hospitalized children with community-acquired pneumonia (CAP) in Hebei Province.
METHODS:
Hospitalized children with CAP who tested positive for RSV and were admitted to Hebei Children's Hospital from various cities and counties across Hebei Province between January 2019 and December 2023 were included in the study. Clinical data were collected and analyzed to assess epidemiological characteristics.
RESULTS:
The clinical data of 43 978 children with CAP were collected, with an overall RSV detection rate of 25.98%. The detection rate was higher during the implementation of non-pharmaceutical interventions (NPIs) (30.60%) than in the non-NPIs period. Winter and spring were the primary epidemic seasons for RSV each year except in 2022. The detection rate in males (26.62%) was higher than in females (25.06%) (P<0.001). The highest detection rate (59.18%) was found in infants aged 29 days to <1 year. Single RSV infection was more common, with rhinovirus being the most frequent co-infection.
CONCLUSIONS
The overall RSV detection rate in Hebei Province is influenced by NPIs, being higher during their implementation. RSV predominantly circulates in winter and spring. The detection rate of RSV is higher in males and infants. RSV infection is primarily single, most often co-occurring with rhinovirus.
Humans
;
Respiratory Syncytial Virus Infections/epidemiology*
;
Female
;
Male
;
Infant
;
Child, Preschool
;
Seasons
;
China/epidemiology*
;
Infant, Newborn
;
Community-Acquired Infections/epidemiology*
;
Child
4.Epidemiological characteristics of human metapneumovirus and risk factors for severe pneumonia in hospitalized children.
Yi-Xuan WANG ; Su-Kun LU ; Kun-Ling HUANG ; Li-Jie CAO ; Ya-Juan CHU ; Bo NIU
Chinese Journal of Contemporary Pediatrics 2025;27(10):1205-1211
OBJECTIVES:
To investigate the epidemiological characteristics of human metapneumovirus (hMPV) and the risk factors for severe pneumonia in hospitalized children.
METHODS:
The epidemiological characteristics of hMPV in hospitalized children at Hebei Children's Hospital from January 2019 to December 2023 were retrospectively analyzed. The clinical data of hospitalized children with hMPV infection from April to December 2023 were included, and independent risk factors for severe pneumonia were identified through logistic regression.
RESULTS:
A total of 44 092 children were tested, with an hMPV positive rate of 7.30% (3 220/44 092). Children aged 3-6 years constituted the largest proportion (40.93%, 1 318/3 220) among hMPV-positive cases. The detection rate varied significantly by year (P<0.001), peaking in 2022 (12.35%, 978/7 919). The peak season of the epidemic was winter and spring from 2019 to 2021, but shifted to spring and summer from 2022 to 2023. The proportion of co-infection was 38.70% (1 246/3 220), primarily with rhinovirus (600/1 246, 48.15%), Mycoplasma pneumoniae (217/1 246, 17.42%), and respiratory syncytial virus (182/1 246, 14.61%). The main manifestations of hMPV pneumonia were cough, expectoration, and fever. Children with severe pneumonia were significantly younger (P<0.05). Wheezing, underlying diseases, co-infection, and younger age were identified as independent risk factors for severe pneumonia (P<0.05).
CONCLUSIONS
There are significant annual and seasonal differences in the epidemiological characteristics of hMPV in hospitalized children. Young age, underlying diseases, wheezing, and co-infection are independent risk factors for severe pneumonia.
Humans
;
Risk Factors
;
Metapneumovirus
;
Child, Preschool
;
Child
;
Male
;
Female
;
Paramyxoviridae Infections/complications*
;
Pneumonia/epidemiology*
;
Retrospective Studies
;
Child, Hospitalized
;
Infant
;
Logistic Models
;
Seasons
;
Hospitalization
5.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
6.Metabolic engineering of Escherichia coli for the biosynthesis of O-acetyl-L-homoserine.
Lianggang HUANG ; Feng GAO ; Nuoran XU ; Junping ZHOU ; Kun NIU ; Bo ZHANG ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2025;41(1):256-270
O-acetyl-L-homoserine (OAH) is a promising platform compound for the production of L-methionine and other valuable compounds, while its low yield and low conversion rate limit the industrial application. To solve these problems, we constructed a strain for high OAH production with the previously constructed L-homoserine producer Escherichia coli HS33 as the chassis by systematic metabolic engineering. Firstly, PEP accumulation, pyruvate utilization, and OAH synthesis pathway (overexpressing aspB, aspA, and thrAC1034T) were enhanced to obtain an initial strain accumulating 13.37 g/L OAH. Subsequently, the co-factor synthesis genes were integrated to supply reducing power and energy, which increased the yield to 15.79 g/L. The OAH yield of the engineered strain OAH28 was further increased to 17.49 g/L by strengthening the acetic acid reuse pathway, improving the supply of acetyl-CoA, and regulating the expression of MetX from different sources. Finally, in a 5 L fermenter, OAH28 achieved an OAH titer of 47.12 g/L, with a glucose conversion rate of 32% and productivity of 0.59 g/(L·h). The results lay a foundation for increasing the OAH production by metabolic engineering and give insights into the industrial production of OAH.
Metabolic Engineering/methods*
;
Escherichia coli/genetics*
;
Homoserine/biosynthesis*
;
Fermentation
7.Construction and fermentation regulation of strains with high yields of echinocandin B.
Kun NIU ; Hongwei CAI ; Yixin YE ; Jinyue XU ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2025;41(4):1455-1466
Echinocandin B (ECB) is a key precursor of the antifungal drug anidulafungin. It is a secondary metabolite of Aspergillus nidulans, and its titer in fermentation is significantly affected by the ECB synthesis pathway and cell morphology. In this study, the key genes related to the transcription activation, hydroxylation, and cell morphology during ECB biosynthesis were investigated to increase the fermentation titer of ECB and to change the cell morphology of Aspergillus nidulans to reduce the viscosity of the fermentation broth. The results indicated that after overexpression of ecdB and ecdK, the ECB titer increased by 25.8% and 23.7%, respectively, compared with that of the wild-type strain, reaching (2 030.5±99.2) mg/L and (1 996.4±151.4) mg/L. However, the deletion of fksA associated with cell wall synthesis resulted in damage to the cell wall, affecting strain growth and product synthesis. The engineered strain overexpressing ecdB was fermented in a 50-L bioreactor, in which the ECB titer reached 2 234.5 mg/L. The findings laid a research foundation for the subsequent metabolic engineering of this strain.
Fermentation
;
Aspergillus nidulans/genetics*
;
Echinocandins/genetics*
;
Bioreactors/microbiology*
;
Fungal Proteins/biosynthesis*
;
Metabolic Engineering
8.Exploration and practice of teaching reform in Synthetic Biology.
Bo ZHANG ; Lianggang HUANG ; Aiping PANG ; Zheyan WU ; Junping ZHOU ; Xue CAI ; Lijuan WANG ; Kun NIU ; Liqun JIN ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2025;41(8):3311-3317
Synthetic biology is a crucial tool for the development of the bio-industry and bio-economy, representing a significant aspect of new quality productive forces. As a core course for graduate students in bioengineering, Synthetic Biology plays a vital role in ensuring the supply of essential talents for the development of the bio-industry in the new era. To better serve regional economic development and provide high-level talents for China's progress in the bio-industry, we analyzed typical issues encountered in the past teaching activities, set up a multi-disciplinary teaching team, optimized the course contents, adjusted the teaching mode, and mobilized students' learning interest. With the application of scientific research project as the starting point, we guided students to think and discuss deeply through the simulation of application writing and project defense, which improved students' critical thinking and innovative thinking. With industrialization as a focus, we explored a new training model combining production, education, and research through the joint practice base of the university and enterprises introduced typical cases of biomanufacturing to encourage students to engage in scientific research. The teaching reform significantly enhances the comprehensive abilities and national sentiments of graduate students. This paper hopes to serve as a reference for colleagues engaged in teaching in this field.
Synthetic Biology/education*
;
Teaching
;
China
;
Humans
9.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
10.Research status of pharmacological mechanism of PCSK9 inhibitors and discussion of their clinical application
Wen-Hui MO ; Si-Lei XU ; Xia HE ; Niu-Niu BAI ; Meng-Ying YUAN ; Zhi-Min LI ; Jiao ZHANG ; Fei WANG ; Yuan-Kun ZHENG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2438-2441
Atherosclerosis caused by disorders of lipid metabolism is the main pathological basis of atherosclerotic cardiovascular disease.Statins are the cornerstone of lipid-modulating therapy for this type of disease,but in practice there are still some patients with suboptimal lipid management.Proprotein convertase subtilisin/kexin type 9(PCSK9)inhibitors have been gradually applied as a new class of lipid-modulating drugs for the treatment in patients with this type of disease,and recent studies have shown that in addition to regulating lipid metabolism,PCSK9 inhibitors also have potential anti-inflammatory and anti-platelet activation effects.This article sorts out the multiple pharmacological mechanisms of action of PCSK9 inhibitors and the current status of clinical research of PCSK9 inhibitors.Besides,it discusses the factors that may affect the efficacy of PCSK9 inhibitors,in order to provide a reference for the safe and rational medication of PCSK9 inhibitors.

Result Analysis
Print
Save
E-mail