1.Epigenetic Regulation of Nuclear Factor Erythroid-2-Related Factor 2 in Colorectal Cancer Cells Resistant to Ionizing Radiation
Kyoung Ah KANG ; Jinny PARK ; Mei Jing PIAO ; Pincha Devage Sameera Madushan FERNANDO ; Herath Mudiyanselage Udari Lakmini HERATH ; Herath Mudiyanselage Maheshika Madhuwanthi SENAVIRATHNA ; Jung-Hwan KIM ; Suk Ju CHO ; Jin Won HYUN
Biomolecules & Therapeutics 2025;33(1):182-192
γ-Radiation resistance is a major obstacle to the success of radiotherapy in colorectal cancer. Antioxidant-related factors contribute to resistance to radiation therapy and, therefore, are targets for improving the therapeutic response. In this study, we evaluated the molecular mechanisms underlying γ-radiation resistance using the colorectal cancer cell line SNUC5 and γ-radiation-resistant variant SNUC5/RR, including analyses of the role of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that regulates antioxidant enzymes, and related epigenetic regulators. Reactive oxygen species (ROS) levels, antioxidant enzyme expression, NRF2 expression, and nuclear translocation were higher in SNUC5/RR cells irradiated with or without 8 Gy than in SNUC5 cells. The DNA demethylase ten-eleven translocation 1 (TET1) expression and TET1 binding to the NRF2 promoter in SNUC5/RR cells were stronger than those in SNUC5 cells, indicating lower methylation of CpG islands in the NRF2 promoter.TET1 knockdown in SNUC5/RR cells suppressed NRF2 expression significantly. Additionally, histone mixed-lineage leukemia (MLL), a histone methyltransferase, was upregulated, leading to increased trimethylation of histone H3 lysine 4, whereas enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, was downregulated, leading to decreased trimethylation of histone H3 lysine 27. Histone deacetylase (HDAC) and histone acetyltransferase (HAT) levels were lower and higher in SNUC5/RR cells than in SNUC5 cells, respectively. MLL and HAT knockdown in SNUC5/RR cells irradiated with or without 8 Gy decreased levels of NRF2 and heme-oxygenase 1, resulting in enhanced γ-radiation sensitivity. These findings support NRF2 as a target for improving the response to radiotherapy in patients with colorectal cancer.
2.Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK
Seung-On LEE ; Sang Hoon JOO ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Kwon-Yeon WEON ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2025;33(2):344-354
Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD.Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.
3.A Novel Histone Deacetylase 6 Inhibitor, 4-FHA, Improves Scopolamine-Induced Cognitive and Memory Impairment in Mice
Jee-Yeon SEO ; Jisoo KIM ; Yong-Hyun KO ; Bo-Ram LEE ; Kwang-Hyun HUR ; Young Hoon JUNG ; Hyun-Ju PARK ; Seok-Yong LEE ; Choon-Gon JANG
Biomolecules & Therapeutics 2025;33(2):268-277
Although histone deacetylase 6 (HDAC6) is considered a therapeutic target for Alzheimer’s disease (AD), its role in cholinergic dysfunction in AD patients remains unclear. This study investigated the effects of (E)-3-(2-(4-fluorostyryl)thiazol-4-yl)-N-hydroxypropanamide (4-FHA), a new synthetic HDAC6 inhibitor, on cognitive and memory impairments in a scopolamine-induced-AD mouse model. Behaviorally, 4-FHA improved scopolamine-induced memory impairments in the Y-maze, passive avoidance, and Morris water maze tests. In addition, 4-FHA ameliorated scopolamine-induced cognitive impairments in the novel object recognition and place recognition tests. Furthermore, 4-FHA increased acetylation of α-tubulin (a major HDAC6 substrate); the expression of BDNF; and the phosphorylation of ERK 1/2, CREB, and ChAT in the hippocampus of scopolamine-treated mice. In summary, according to our data 4-FHA, an HDAC6 inhibitor, improved the cognitive and memory deficits of the AD mouse model by normalizing BDNF signaling and synaptic transmission, suggesting that 4-FHA might be a potential therapeutic candidate for AD.
4.Erratum to "Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress" Biomol Ther 32(3), 349-360 (2024)
Hyun HWANGBO ; Cheol PARK ; EunJin BANG ; Hyuk Soon KIM ; Sung-Jin BAE ; Eunjeong KIM ; Youngmi JUNG ; Sun-Hee LEEM ; Young Rok SEO ; Su Hyun HONG ; Gi-Young KIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):555-555
5.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
6.Prediction of Cancer Incidence and Mortality in Korea, 2025
Kyu-Won JUNG ; Mee Joo KANG ; Eun Hye PARK ; E Hwa YUN ; Hye-Jin KIM ; Jeong-Eun KIM ; Hyun-Joo KONG ; Kui Son CHOI ; Han-Kwang YANG
Cancer Research and Treatment 2025;57(2):331-338
Purpose:
This study aimed to project cancer incidence and mortality for 2025 to estimate Korea’s current cancer burden.
Materials and Methods:
Cancer incidence data from 1999 to 2022 were obtained from the Korea National Cancer Incidence Database, while cancer mortality data from 1993 to 2023 were acquired from Statistics Korea. Cancer incidence and mortality were projected by fitting a linear regression model to observed age-specific cancer rates against their respective years and then by multiplying the projected age-specific rates by the anticipated age-specific population for 2025. A joinpoint regression model was applied to identify significant changes in trends, using only the most recent trend data for predictions.
Results:
A total of 304,754 new cancer cases and 84,019 cancer deaths are expected in Korea in 2025. The most commonly diagnosed cancer is projected to be thyroid cancer, followed by the colorectal, lung, breast, prostate and stomach cancers. These six cancers are expected to account for 63.8% of the total cancer burden. Lung cancer is expected to be the leading cause of cancer-related deaths, followed by liver, colorectal, pancreatic, stomach, and gallbladder cancers, together comprising 66.6% of total cancer deaths.
Conclusion
The increasing incidence of female breast cancer and the rise in prostate and pancreatic cancers are expected to continue. As aging accelerates, cancer commonly found in older adults are projected to rise significantly.
7.Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2022
Eun Hye PARK ; Kyu-Won JUNG ; Nam Ju PARK ; Mee Joo KANG ; E Hwa YUN ; Hye-Jin KIM ; Jeong-Eun KIM ; Hyun-Joo KONG ; Kui-Son CHOI ; Han-Kwang YANG ;
Cancer Research and Treatment 2025;57(2):312-330
Purpose:
The current study provides national cancer statistics and their secular trends in Korea, including incidence, mortality, survival, and prevalence in 2022, with international comparisons.
Materials and Methods:
Cancer incidence, survival, and prevalence rates were calculated using the Korea National Cancer Incidence Database (1999-2022), with survival follow-up until December 31, 2023. Mortality data obtained from Statistics Korea, while international comparisons were based on GLOBOCAN data.
Results:
In 2022, 282,047 newly diagnosed cancer cases (age-standardized rate [ASR], 287.0 per 100,000) and 83,378 deaths from cancer (ASR, 65.7 per 100,000) were reported. The proportion of localized-stage cancers increased from 45.6% in 2005 to 50.9% in 2022. Stomach, colorectal, and breast cancer showed increased localized-stage diagnoses by 18.1, 18.5, and 9.9 percentage points, respectively. Compared to 2001-2005, the 5-year relative survival (2018-2022) increased by 20.4 percentage points for stomach cancer, 7.6 for colorectal cancer, and 5.6 for breast cancer. Korea had the lowest cancer mortality among countries with similar incidence rates and the lowest mortality-to-incidence (M/I) ratios for these cancers. The 5-year relative survival (2018-2022) was 72.9%, contributing to over 2.59 million prevalent cases in 2022.
Conclusion
Since the launch of the National Cancer Screening Program in 2002, early detection has improved, increasing the diagnosis of localized-stage cancers and survival rates. Korea recorded the lowest M/I ratio among major comparison countries, demonstrating the effectiveness of its National Cancer Control Program.
8.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
9.The Role of Direct Oral Anticoagulants in Managing Myeloproliferative Neoplasms Patients
Ji Yun LEE ; Ju-Hyun LEE ; Woochan PARK ; Jeongmin SEO ; Minsu KANG ; Eun Hee JUNG ; Sang-A KIM ; Koung Jin SUH ; Ji-Won KIM ; Se Hyun KIM ; Jeong-Ok LEE ; Jin Won KIM ; Yu Jung KIM ; Keun-Wook LEE ; Jee Hyun KIM ; Soo-Mee BANG
Cancer Research and Treatment 2025;57(2):612-620
Purpose:
Thrombosis and bleeding significantly affect morbidity and mortality in myeloproliferative neoplasms (MPNs). The efficacy and safety of direct oral anticoagulants (DOACs) in MPN patients remain uncertain.
Materials and Methods:
We conducted a large, retrospective, nationwide cohort study using the Korean Health Insurance Review and Assessment Service database from 2010 to 2021.
Results:
Out of the 368 MPN patients included in the final analysis, 62.8% were treated with DOACs for atrial fibrillation (AF), and 37.2% for venous thromboembolism (VTE). The AF group was statistically older with higher CHA2DS2-VASc (congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, prior stroke, transient ischemic attack, or thromboembolism, vascular disease, age 65-74 years, sex category [female]) scores compared to the VTE group. Antiplatelet agents were used in 51.1% of cases, and cytoreductive drugs in 79.3%, with hydroxyurea being the most common (64.9%). The median follow-up was 22.3 months, with 1-year cumulative incidence rates of thrombosis and bleeding at 11.1% and 3.7%, respectively. Multivariate analysis identified CHA2DS2-VASc scores ≥ 3 (hazard ratio [HR], 3.48), concomitant antiplatelet use (HR, 2.57), and cytoreduction (HR, 2.20) as significant thrombosis risk factors but found no significant predictors for major bleeding.
Conclusion
Despite the limitations of retrospective data, DOAC treatment in MPN patients seems effective and has an acceptable bleeding risk.
10.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea.

Result Analysis
Print
Save
E-mail