1.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
Objective:
To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck.
Materials and Methods:
Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale.
Results:
FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE.
Conclusion
DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance.
2.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
Objective:
To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck.
Materials and Methods:
Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale.
Results:
FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE.
Conclusion
DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance.
3.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
Objective:
To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck.
Materials and Methods:
Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale.
Results:
FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE.
Conclusion
DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance.
4.Diagnosis of Pneumocystis jirovecii Pneumonia in Non-HIV Immunocompromised Patient in Korea: A Review and Algorithm Proposed by Expert Consensus Group
Raeseok LEE ; Kyungmin HUH ; Chang Kyung KANG ; Yong Chan KIM ; Jung Ho KIM ; Hyungjin KIM ; Jeong Su PARK ; Ji Young PARK ; Heungsup SUNG ; Jongtak JUNG ; Chung-Jong KIM ; Kyoung-Ho SONG
Infection and Chemotherapy 2025;57(1):45-62
Pneumocystis jirovecii pneumonia (PJP) is a life-threatening infection commonly observed in immunocompromised patients, necessitating prompt diagnosis and treatment. This review evaluates the diagnostic performance of various tests used for PJP diagnosis through a comprehensive literature review. Additionally, we propose a diagnostic algorithm tailored to non-human immunodeficiency virus immunocompromised patients, considering the specific characteristics of current medical resources in Korea.
5.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
Objective:
To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck.
Materials and Methods:
Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale.
Results:
FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE.
Conclusion
DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance.
6.Is difficulty of extraction associated with inferior alveolar nerve proximity on computed tomography and increased injury risk?
Jeong-Kui KU ; Sung Min KIM ; Jong-Ki HUH ; Jae-Young KIM
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(2):80-86
Objectives:
Many three-dimensionally-evaluated difficulty indices for impacted third molars have been suggested; however, their radiological and clinical validation according to the inferior alveolar nerve (IAN) remains unknown. This study aimed to evaluate the association of the difficulty index with IAN proximity and injury risk.
Materials and Methods:
We retrospectively enrolled patients with cone-beam computed tomography (CBCT) for a fully impacted mandibular third molar from January to December 2020. We evaluated the third molar according to the difficulty index based on panoramic x-ray and the nerve index based on CBCT and analyzed postoperative nerve complications. The relationships among nerve proximity, difficulty indices, and nerve complications were evaluated. Data were analyzed using the Pearson’s chi-square test and the Cochran–Armitage test for trends.
Results:
We included 367 subjects (177 males, 28.9±9.8 years) with follow-up of at least 1 month. Twenty-two subjects had nerve complications.Radiologic evaluation showed that third molars with a high nerve index had an increased difficulty index (P=0.001). Nerve complication risk showed a statistically significant correlation with both nerve and difficulty indices.
Conclusion
In conclusion, the difficulty index of an impacted third molar was valid in terms of its spatial relationship with the IAN and in predicting nerve complications.
7.Diagnosis of Pneumocystis jirovecii Pneumonia in Non-HIV Immunocompromised Patient in Korea: A Review and Algorithm Proposed by Expert Consensus Group
Raeseok LEE ; Kyungmin HUH ; Chang Kyung KANG ; Yong Chan KIM ; Jung Ho KIM ; Hyungjin KIM ; Jeong Su PARK ; Ji Young PARK ; Heungsup SUNG ; Jongtak JUNG ; Chung-Jong KIM ; Kyoung-Ho SONG
Infection and Chemotherapy 2025;57(1):45-62
Pneumocystis jirovecii pneumonia (PJP) is a life-threatening infection commonly observed in immunocompromised patients, necessitating prompt diagnosis and treatment. This review evaluates the diagnostic performance of various tests used for PJP diagnosis through a comprehensive literature review. Additionally, we propose a diagnostic algorithm tailored to non-human immunodeficiency virus immunocompromised patients, considering the specific characteristics of current medical resources in Korea.
8.Is difficulty of extraction associated with inferior alveolar nerve proximity on computed tomography and increased injury risk?
Jeong-Kui KU ; Sung Min KIM ; Jong-Ki HUH ; Jae-Young KIM
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(2):80-86
Objectives:
Many three-dimensionally-evaluated difficulty indices for impacted third molars have been suggested; however, their radiological and clinical validation according to the inferior alveolar nerve (IAN) remains unknown. This study aimed to evaluate the association of the difficulty index with IAN proximity and injury risk.
Materials and Methods:
We retrospectively enrolled patients with cone-beam computed tomography (CBCT) for a fully impacted mandibular third molar from January to December 2020. We evaluated the third molar according to the difficulty index based on panoramic x-ray and the nerve index based on CBCT and analyzed postoperative nerve complications. The relationships among nerve proximity, difficulty indices, and nerve complications were evaluated. Data were analyzed using the Pearson’s chi-square test and the Cochran–Armitage test for trends.
Results:
We included 367 subjects (177 males, 28.9±9.8 years) with follow-up of at least 1 month. Twenty-two subjects had nerve complications.Radiologic evaluation showed that third molars with a high nerve index had an increased difficulty index (P=0.001). Nerve complication risk showed a statistically significant correlation with both nerve and difficulty indices.
Conclusion
In conclusion, the difficulty index of an impacted third molar was valid in terms of its spatial relationship with the IAN and in predicting nerve complications.
9.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
Objective:
To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck.
Materials and Methods:
Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale.
Results:
FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE.
Conclusion
DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance.
10.Diagnosis of Pneumocystis jirovecii Pneumonia in Non-HIV Immunocompromised Patient in Korea: A Review and Algorithm Proposed by Expert Consensus Group
Raeseok LEE ; Kyungmin HUH ; Chang Kyung KANG ; Yong Chan KIM ; Jung Ho KIM ; Hyungjin KIM ; Jeong Su PARK ; Ji Young PARK ; Heungsup SUNG ; Jongtak JUNG ; Chung-Jong KIM ; Kyoung-Ho SONG
Infection and Chemotherapy 2025;57(1):45-62
Pneumocystis jirovecii pneumonia (PJP) is a life-threatening infection commonly observed in immunocompromised patients, necessitating prompt diagnosis and treatment. This review evaluates the diagnostic performance of various tests used for PJP diagnosis through a comprehensive literature review. Additionally, we propose a diagnostic algorithm tailored to non-human immunodeficiency virus immunocompromised patients, considering the specific characteristics of current medical resources in Korea.

Result Analysis
Print
Save
E-mail