1.A case for the oocyte: Why grading of oocyte morphology should be implemented in the IVF laboratory and how
Philippine Journal of Reproductive Endocrinology and Infertility 2024;21(2):59-71
In Vitro Fertilization (IVF) is generally accepted as the most effective treatment for infertility. Its success depends on the correct and meticulous implementation of each stage in the procedure. The process of systematically examining embryos is standardized through the use of internationally recognized criteria. On the other hand, the evaluation of oocyte quality continues to be conducted more arbitrarily. A morphologically good quality mature human oocyte is universally described as one that shows a homogeneous cytoplasm, has a single polar body (PB), an approprate zona pellucida (ZP) thickness and a proper perivitelline space (PVS). An abnormality in one or more of these features are very common in IVF cycles and may be related to several factors that are extrinsic and intrinsic to the patient. There has been extensive speculation over whether specific anomalies in the structure of oocytes can suggest a reduced developmental capacity. The most notable among the dysmorphisms of oocytes are the severe morphological deviations, such as smooth endoplasmic reticulum clusters, cytoplasm granularity, and giant oocytes that are related to genetic abnormalities, and extra-cytoplasmic parameters such as PB morphology, the PVS and ZP abnormalities that may indicate oocyte ageing. This paper acknowledges the significance of oocyte morphology grading as an important and practical predictor of a successful IVF outcome and it can serve as a supplementary measure to embryonic assessment in order to optimize efficacy of assisted reproductive technology (ART). It discusses the fundamental knowledge that infertility specialists and embryologists should possess to enable its routine application in the ART laboratory.
Fertilization In Vitro ; Sperm Injections, Intracytoplasmic ; Reproductive Techniques, Assisted ; Embryonic Development ; Meiotic Spindle ; Spindle Apparatus
2.Gestational surrogacy
Philippine Journal of Obstetrics and Gynecology 2024;48(1):55-59
Some women may not be able to carry their own children even when capable of conceiving biological offspring. In-vitro fertilization and embryo-transfer (IVF-ET) through surrogacy can now make this possible for these women. Surrogacy however, is still considered unacceptable in the Philippines due to moral and legal issues. This article will explore the need and acceptability of surrogacy in this age of IVF-ET in a country where the prevailing social norms and religious values still disapprove of third-party assisted reproductive technology (ART). Medical indications that would benefit from gestational surrogacy were enumerated and briefly discussed. The differentiation between traditional and gestation surrogacy, as well as commercial and altruistic surrogacy were defined. IVF with gestational surrogacy is a feasible solution to a number of medical difficulties in the carrying of a gestation. Strictly regulating the practice and restricting its use only to cases with legitimate medical indications will prevent its misuse and exploitation. Moral issues, admittedly will still remain an issue particularly for commercial surrogacy. However, limiting these only to altruistic and gestational surrogacy in some cases may be an acceptable compromise.
Child
;
Fertilization in Vitro
;
Reproductive Techniques, Assisted
3.Overview and prospects of an in vitro cell model for studying liver fibrosis.
Chinese Journal of Hepatology 2023;31(6):668-672
Liver fibrosis incidence and adverse outcomes are high; however, there are no known chemical drugs or biological agents that are specific and effective for treatment. The paucity of a robust and realistic in vitro model for liver fibrosis is one of the major causes hindering anti-liver fibrosis drug development. This article summarizes the latest progress in the development of in vitro cell models for liver fibrosis, with a focus based on the analysis of induction and activation of hepatic stellate cells, cell co-culture, and 3D model co-construction, as well as concurrent potential methods based on hepatic sinusoidal endothelial cell establishment.
Humans
;
Liver Cirrhosis/pathology*
;
Hepatic Stellate Cells
;
Cell Culture Techniques
;
Endothelial Cells
4.A new biosynthesis route for production of 5-aminovalanoic acid, a biobased plastic monomer.
Yaqi KANG ; Ruoshi LUO ; Fanzhen LIN ; Jie CHENG ; Zhen ZHOU ; Dan WANG
Chinese Journal of Biotechnology 2023;39(5):2070-2080
5-aminovalanoic acid (5AVA) can be used as the precursor of new plastics nylon 5 and nylon 56, and is a promising platform compound for the synthesis of polyimides. At present, the biosynthesis of 5-aminovalanoic acid generally is of low yield, complex synthesis process and high cost, which hampers large-scale industrial production. In order to achieve efficient biosynthesis of 5AVA, we developed a new pathway mediated by 2-keto-6-aminohexanoate. By combinatory expression of L-lysine α-oxidase from Scomber japonicus, α-ketoacid decarcarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli, the synthesis of 5AVA from L-lysine in Escherichia coli was achieved. Under the initial conditions of glucose concentration of 55 g/L and lysine hydrochloride of 40 g/L, the final consumption of 158 g/L glucose and 144 g/L lysine hydrochloride, feeding batch fermentation to produce 57.52 g/L of 5AVA, and the molar yield is 0.62 mol/mol. The new 5AVA biosynthetic pathway does not require ethanol and H2O2, and achieved a higher production efficiency as compared to the previously reported Bio-Chem hybrid pathway mediated by 2-keto-6-aminohexanoate.
Nylons
;
Lysine/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Metabolic Engineering
;
Plastics/metabolism*
;
Fermentation
;
Escherichia coli/metabolism*
;
Aminocaproates/metabolism*
5.Recent progress in the biosynthesis of dicarboxylic acids, a monomer of biodegradable plastics.
Rui ZHI ; Yanbo LU ; Min WANG ; Guohui LI ; Yu DENG
Chinese Journal of Biotechnology 2023;39(5):2081-2094
Plastics are one of the most important polymers with huge global demand. However, the downsides of this polymer are that it is difficult to degrade, which causes huge pollution. The environmental-friendly bio-degradable plastics therefore could be an alternative and eventually fulfill the ever-growing demand from every aspect of the society. One of the building blocks of bio-degradable plastics is dicarboxylic acids, which have excellent biodegradability and numerous industrial applications. More importantly, dicarboxylic acid can be biologically synthesized. Herein, this review discusses the recent advance on the biosynthesis routes and metabolic engineering strategies of some of the typical dicarboxylic acids, in hope that it will help to provide inspiration to further efforts on the biosynthesis of dicarboxylic acids.
Biodegradable Plastics
;
Dicarboxylic Acids
;
Polymers/metabolism*
;
Biodegradation, Environmental
;
Metabolic Engineering
6.Preface for special issue on chemical bioproduction.
Chinese Journal of Biotechnology 2023;39(6):2101-2107
Engineering efficient enzymes or microbial cell factories should help to establish green bio-manufacturing process for chemical overproduction. The rapid advances and development in synthetic biology, systems biology and enzymatic engineering accerleate the establishing feasbile bioprocess for chemical biosynthesis, including expanding the chemical kingdom and improving the productivity. To consolidate the latest advances in chemical biosynthesis and promote green bio-manufaturing, we organized a special issue on chemical bioproduction that including review or original research papers about enzymatic biosynthesis, cell factory, one-carbon based biorefinery and feasible strategies. These papers comprehensively discussed the latest advaces, the challenges as well as the possible solutions in chemical biomanufacturing.
Synthetic Biology
;
Carbon
;
Metabolic Engineering
7.Fermentative production of tetraacetyl phytosphingosine: a review.
Liuwei CUI ; Kaifeng WANG ; Xiaojun JI
Chinese Journal of Biotechnology 2023;39(6):2204-2214
Tetraacetyl phytosphingosine (TAPS) is an excellent raw material for natural skin care products. Its deacetylation leads to the production of phytosphingosine, which can be further used for synthesizing the moisturizing skin care product ceramide. For this reason, TAPS is widely used in the skin care oriented cosmetics industry. The unconventional yeast Wickerhamomyces ciferrii is the only known microorganism that can naturally secrete TAPS, and it has become the host for the industrial production of TAPS. This review firstly introduces the discovery, functions of TAPS, and the metabolic pathway for TAPS biosynthesis is further introduced. Subsequently, the strategies for increasing the TAPS yield of W. ciferrii, including haploid screening, mutagenesis breeding and metabolic engineering, are summarized. In addition, the prospects of TAPS biomanufacturing by W. ciferrii are discussed in light of the current progresses, challenges, and trends in this field. Finally, guidelines for engineering W. ciferrii cell factory using synthetic biology tools for TAPS production are also presented.
Sphingosine
;
Ceramides
;
Metabolic Engineering
;
Synthetic Biology
8.Advances on the production of organic acids by yeast.
Ruiyuan ZHANG ; Yifan ZHU ; Duwen ZENG ; Shihao WEI ; Yachao FAN ; Sha LIAO ; Xinqing ZHAO ; Fengli ZHANG ; Lin ZHANG
Chinese Journal of Biotechnology 2023;39(6):2231-2247
Organic acids are organic compounds that can be synthesized using biological systems. They often contain one or more low molecular weight acidic groups, such as carboxyl group and sulphonic group. Organic acids are widely used in food, agriculture, medicine, bio-based materials industry and other fields. Yeast has unique advantages of biosafety, strong stress resistance, wide substrate spectrum, convenient genetic transformation, and mature large-scale culture technology. Therefore, it is appealing to produce organic acids by yeast. However, challenges such as low concentration, many by-products and low fermentation efficiency still exist. With the development of yeast metabolic engineering and synthetic biology technology, rapid progress has been made in this field recently. Here we summarize the progress of biosynthesis of 11 organic acids by yeast. These organic acids include bulk carboxylic acids and high-value organic acids that can be produced naturally or heterologously. Finally, future prospects in this field were proposed.
Saccharomyces cerevisiae/metabolism*
;
Organic Chemicals
;
Carboxylic Acids/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Acids
9.Microbial production of S-adenosyl-l-methionine: a review.
Meijing LI ; Zheyan MI ; Jinhao WANG ; Zhongce HU ; Haibin QIN ; Yuanshan WANG ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(6):2248-2264
S-adenosyl-l-methionine (SAM) is ubiquitous in living organisms and plays important roles in transmethylation, transsulfuration and transamination in organisms. Due to its important physiological functions, production of SAM has attracted increasing attentions. Currently, researches on SAM production mainly focus on microbial fermentation, which is more cost-effective than that of the chemical synthesis and the enzyme catalysis, thus easier to achieve commercial production. With the rapid growth in SAM demand, interests in improving SAM production by developing SAM hyper-producing microorganisms aroused. The main strategies for improving SAM productivity of microorganisms include conventional breeding and metabolic engineering. This review summarizes the recent research progress in improving microbial SAM productivity to facilitate further improving SAM productivity. The bottlenecks in SAM biosynthesis and the solutions were also addressed.
S-Adenosylmethionine/metabolism*
;
Plant Breeding
;
Fermentation
;
Metabolic Engineering
10.Advances on the microbial synthesis of plant-derived diterpenoids.
Yatian CHENG ; Hao TANG ; Lili SUN ; Yating HU ; Ying MA ; Juan GUO ; Luqi HUANG
Chinese Journal of Biotechnology 2023;39(6):2265-2283
Natural plant-derived diterpenoids are a class of compounds with diverse structures and functions. These compounds are widely used in pharmaceuticals, cosmetics and food additives industries because of their pharmacological properties such as anticancer, anti-inflammatory and antibacterial activities. In recent years, with the gradual discovery of functional genes in the biosynthetic pathway of plant-derived diterpenoids and the development of synthetic biotechnology, great efforts have been made to construct a variety of diterpenoid microbial cell factories through metabolic engineering and synthetic biology, resulting in gram-level production of many compounds. This article summarizes the construction of plant-derived diterpenoid microbial cell factories through synthetic biotechnology, followed by introducing the metabolic engineering strategies applied to improve plant-derived diterpenoids production, with the aim to provide a reference for the construction of high-yield plant-derived diterpenoid microbial cell factories and the industrial production of diterpenoids.
Diterpenes/metabolism*
;
Biotechnology
;
Metabolic Engineering
;
Biosynthetic Pathways/genetics*
;
Plants/genetics*
;
Synthetic Biology


Result Analysis
Print
Save
E-mail