1.Clinical Efficacy of Ultrafast Dynamic Contrast-Enhanced MRI Using Compressed Sensing in Distinguishing Benign and Malignant Soft-Tissue Tumors
You Seon SONG ; In Sook LEE ; Young Jin CHOI ; Jeung Il KIM ; Kyung-Un CHOI ; Kangsoo KIM ; Kyungeun JANG
Korean Journal of Radiology 2025;26(1):43-53
Objective:
To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.
Materials and Methods:
A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained. During post-processing of the early arterial phase of DCE-MRI, the time-to-enhance (TTE), time-to-peak (TTP), initial area under the curve at 60 s (iAUC60), and maximum slope were calculated. Furthermore, the delayed arterial phase parameters of DCEMRI, including Ktrans , Kep, Ve, and iAUC values and time-concentration curve (TCC) types, were determined. Clinical and MRI parameters were statistically analyzed to differentiate between benign and malignant tumors and their correlation with tumor grading.
Results:
According to logistic regression analysis, the TTE value (P < 0.001) of the early arterial phase and Ve (P = 0.039) and iAUC (P = 0.006) values of the delayed arterial phase, as well as age, location, peritumoral edema, and contrast heterogeneity on conventional MRI, were significant (P = 0.001–0.015) in differentiating benign and malignant tumors. Among all the quantitative parameters, the TTE value had the highest accuracy, with an area under the receiver operating characteristic curve of 0.902. The grading of malignant tumors was significantly correlated with peritumoral edema; CE heterogeneity; visual diffusion restriction; minimum and mean ADC; TTP, Kep, and Ve values; and the TCC graph (all P < 0.05).
Conclusion
Among the quantitative parameters obtained using ultrafast DCE-MRI, early arterial phase TTE was the most accurate for distinguishing between benign and malignant tumors.
2.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
Objective:
To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck.
Materials and Methods:
Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale.
Results:
FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE.
Conclusion
DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance.
3.Far-Lateral Transforaminal Unilateral Biportal Endoscopic Lumbar Discectomy for Upper Lumbar Disc Herniations
Jin Seop HWANG ; Sang Hyub LEE ; Dain JEONG ; Jae-Won JANG ; Yong Eun CHO ; Dong-Geun LEE ; Choon Keun PARK ; Chung Kee CHOUGH
Neurospine 2025;22(1):14-27
Objective:
The upper lumbar region has distinctive anatomical characteristics that contribute to the challenges of performing discectomy. We introduce far-lateral transforaminal unilateral biportal endoscopic (UBE) lumbar discectomy for central or paracentral disc herniations in the upper lumbar region.
Methods:
We conducted retrospective review of the patients who underwent a far-lateral transforaminal UBE lumbar discectomy at our institution from January 2018 to September 2024. The electronic medical records, operative records, and radiologic images of the patients were reviewed.
Results:
A total of 27 patients underwent far-lateral transforaminal UBE lumbar discectomy for central or paracentral disc herniations in the upper lumbar region. The patient had a mean age of 54.0 ± 13.7 years. Operation was performed at the L1–2 level in 3 patients (11.1%), L2–3 in 9 patients (33.3%), and L3–4 in 15 patients (55.6%). The patients were followed-up for a mean of 27.7 ± 19.3 months. The Oswestry Disability Index was significantly decreased from 36.3 ± 6.8 preoperatively to 3.7 ± 3.3 at last follow-up (p < 0.001). The visual analogue scale (VAS) back was significantly decreased from 7.8 ± 0.9 preoperatively to 3.1 ± 0.6 postoperative day 2 (p < 0.001). The VAS leg was significantly decreased from 8.1 ± 0.8 preoperatively to 2.3 ± 0.7 postoperative day 2 (p < 0.001).
Conclusion
The far-lateral transforaminal UBE lumbar discectomy would be a viable surgical option for upper lumbar disc herniations.
4.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
5.O-arm navigation-based transforaminal unilateral biportal endoscopic discectomy for upper lumbar disc herniation: an innovative preliminary study
Dong Hyun LEE ; Choon Keun PARK ; Jin-Sung KIM ; Jin Sub HWANG ; Jin Young LEE ; Dong-Geun LEE ; Jae-Won JANG ; Jun Yong KIM ; Yong-Eun CHO ; Dong Chan LEE
Asian Spine Journal 2025;19(2):194-204
Methods:
The UBE approach targeted the ventral part of the superior articular process in the transforaminal UBE setup, specifically for upper lumbar disc herniation, with an approach angle of approximately 30º on the axial plane. Intraoperative navigation was employed to improve puncture accuracy for this relatively unfamiliar surgical technique. Navigation-assisted transforaminal UBE lumbar discectomy was performed on four patients presenting with back or leg discomfort due to disc herniation at the L1–L2 or L2–L3 levels.
Results:
All patients experienced symptom relief and were discharged on postoperative day 2.
Conclusions
Transforaminal UBE lumbar discectomy is a viable therapeutic option for upper lumbar paracentral disc herniation, which is typically associated with poor prognosis. Integrating navigation integration into this novel approach enhances precision and safety.
7.Clinical Efficacy of Ultrafast Dynamic Contrast-Enhanced MRI Using Compressed Sensing in Distinguishing Benign and Malignant Soft-Tissue Tumors
You Seon SONG ; In Sook LEE ; Young Jin CHOI ; Jeung Il KIM ; Kyung-Un CHOI ; Kangsoo KIM ; Kyungeun JANG
Korean Journal of Radiology 2025;26(1):43-53
Objective:
To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.
Materials and Methods:
A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained. During post-processing of the early arterial phase of DCE-MRI, the time-to-enhance (TTE), time-to-peak (TTP), initial area under the curve at 60 s (iAUC60), and maximum slope were calculated. Furthermore, the delayed arterial phase parameters of DCEMRI, including Ktrans , Kep, Ve, and iAUC values and time-concentration curve (TCC) types, were determined. Clinical and MRI parameters were statistically analyzed to differentiate between benign and malignant tumors and their correlation with tumor grading.
Results:
According to logistic regression analysis, the TTE value (P < 0.001) of the early arterial phase and Ve (P = 0.039) and iAUC (P = 0.006) values of the delayed arterial phase, as well as age, location, peritumoral edema, and contrast heterogeneity on conventional MRI, were significant (P = 0.001–0.015) in differentiating benign and malignant tumors. Among all the quantitative parameters, the TTE value had the highest accuracy, with an area under the receiver operating characteristic curve of 0.902. The grading of malignant tumors was significantly correlated with peritumoral edema; CE heterogeneity; visual diffusion restriction; minimum and mean ADC; TTP, Kep, and Ve values; and the TCC graph (all P < 0.05).
Conclusion
Among the quantitative parameters obtained using ultrafast DCE-MRI, early arterial phase TTE was the most accurate for distinguishing between benign and malignant tumors.
8.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
Objective:
To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck.
Materials and Methods:
Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale.
Results:
FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE.
Conclusion
DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance.
10.Pre-Treatment Perceived Social Support Is Associated With Chemotherapy-Induced Peripheral Neuropathy in Patients With Breast Cancer: A Longitudinal Study
Joon Sung SHIN ; Sanghyup JUNG ; Geun Hui WON ; Sun Hyung LEE ; Jaehyun KIM ; Saim JUNG ; Chan-Woo YEOM ; Kwang-Min LEE ; Kyung-Lak SON ; Jang-il KIM ; Sook Young JEON ; Han-Byoel LEE ; Bong-Jin HAHM
Psychiatry Investigation 2025;22(4):424-434
Objective:
Previous studies have reported an association between cancer-related symptoms and perceived social support (PSS). The objective of this study was to analyze whether Chemotherapy-Induced Peripheral Neuropathy (CIPN), a prevalent side effect of chemotherapy, varies according to PSS level using a validated tool for CIPN at prospective follow-up.
Methods:
A total of 39 breast cancer patients were evaluated for PSS using the Multidimensional Scale of Perceived Social Support (MSPSS) prior to chemotherapy and were subsequently grouped into one of two categories for each subscale: low-to-moderate PSS and high PSS. CIPN was prospectively evaluated using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Chemotherapy-Induced Peripheral Neuropathy 20 (CIPN20) at five time points. A linear mixed-effects model with square root transformation was employed to investigate whether the CIPN20 scales varied by PSS level and time point.
Results:
Statistical analysis of the MSPSS total scale and subscales revealed a significant effect of the friends subscale group and time point on the CIPN20 sensory scale. The sensory scale score of CIPN20 was found to be lower in participants with high PSS from friends in comparison to those with low-to-moderate PSS at 1 month post-chemotherapy (p=0.010).
Conclusion
This is the first study to prospectively follow the long-term effect of pre-treatment PSS from friends on CIPN. Further studies based on larger samples are required to analyze the effects of PSS on the pathophysiology of CIPN.

Result Analysis
Print
Save
E-mail