1.A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection
Manisha NASKAR ; Hae Woong CHOI
Immune Network 2024;24(4):e31-
		                        		
		                        			
		                        			 Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance. 
		                        		
		                        		
		                        		
		                        	
2.Multi-Layered Mechanisms ofImmunological Tolerance at the Maternal-Fetal Interface
Jin Soo JOO ; Dongeun LEE ; Jun Young HONG
Immune Network 2024;24(4):e30-
		                        		
		                        			
		                        			 Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes. 
		                        		
		                        		
		                        		
		                        	
3.The Multifaceted Roles of NKCells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections
Immune Network 2024;24(4):e29-
		                        		
		                        			
		                        			 NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells.NK cells play a valuable role in controlling viral infections. Also, they have the potential to shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine models are important tools for delineating the immunological phenomena in viral infection.To decipher the immunological virus-host interactions, two major infection models are being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV infections and outline the exquisite interplay between NK cells and other immune cells in these two settings. Considering that, infections with MCMV and LCMV recapitulates many physiopathological characteristics of human cytomegalovirus infection and chronic virus infections respectively, this study will extend our understanding of NK cells biology in interactions between the virus and its natural host. 
		                        		
		                        		
		                        		
		                        	
4.Germinal Center Response tomRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination
Immune Network 2024;24(4):e28-
		                        		
		                        			
		                        			 Vaccines are the most effective intervention currently available, offering protective immunity against targeted pathogens. The emergence of the coronavirus disease 2019 pandemic has prompted rapid development and deployment of lipid nanoparticle encapsulated, mRNAbased vaccines. While these vaccines have demonstrated remarkable immunogenicity, concerns persist regarding their ability to confer durable protective immunity to continuously evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. This review focuses on human B cell responses induced by SARS-CoV-2 mRNA vaccination, with particular emphasis on the crucial role of germinal center reactions in shaping enduring protective immunity. Additionally, we explored observations of immunological imprinting and dynamics of recalled pre-existing immunity following variants of concern-based booster vaccination. Insights from this review contribute to comprehensive understanding B cell responses to mRNA vaccination in humans, thereby refining vaccination strategies for optimal and sustained protection against evolving coronavirus variants. 
		                        		
		                        		
		                        		
		                        	
5.Complement C5a Receptor Signalingin Macrophages Enhances Trained Immunity Through mTOR Pathway Activation
Eun-Hyeon SHIM ; Sae-Hae KIM ; Doo-Jin KIM ; Yong-Suk JANG
Immune Network 2024;24(4):e24-
		                        		
		                        			
		                        			 Complement C5a receptor (C5aR) signaling in immune cells has various functions, inducing inflammatory or anti-inflammatory responses based on the type of ligand present. The Co1 peptide (SFHQLPARSRPLP) has been reported to activate C5aR signaling in dendritic cells. We investigated the effect of C5aR signaling via the Co1 peptide on macrophages. In peritoneal macrophages, the interaction between C5aR and the Co1 peptide activated the mTOR pathway, resulting in the production of pro-inflammatory cytokines. Considering the close associations of mTOR signaling with IL-6 and TNF-α in macrophage training, our findings indicate that the Co1 peptide amplifies β-glucan-induced trained immunity. Overall, this research highlights a previously underappreciated aspect of C5aR signaling in trained immunity, and posits that the Co1 peptide is a potentially effective immunomodulator for enhancing trained immunity. 
		                        		
		                        		
		                        		
		                        	
6.Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes
Bo-Gyu KIM ; Hoon Sik CHOI ; Yong-ho CHOE ; Hyun Min JEON ; Ji Yeon HEO ; Yun-Hong CHEON ; Ki Mun KANG ; Sang-Il LEE ; Bae Kwon JEONG ; Mingyo KIM
Immune Network 2024;24(4):e32-
		                        		
		                        			
		                        			 Low-dose radiotherapy (LDRT) has been explored as a treatment option for various inflammatory diseases; however, its application in the context of rheumatoid arthritis (RA) is lacking. This study aimed to elucidate the mechanism underlying LDRT-based treatment for RA and standardize it. LDRT reduced the total numbers of immune cells, but increased the apoptotic CD4+ T and B220+ B cells, in the draining lymph nodes of collagen induced arthritis and K/BxN models. In addition, it significantly reduced the severity of various pathological manifestations, including bone destruction, cartilage erosion, and swelling of hind limb ankle. Post-LDRT, the proportion of apoptotic CD4+ T and CD19 + B cells increased significantly in the PBMCs derived from human patients with RA. LDRT showed a similar effect in fibroblast-like synoviocytes as well. In conclusion, we report that LDRT induces apoptosis in immune cells and fibro-blast-like synoviocytes, contributing to attenuation of arthritis. 
		                        		
		                        		
		                        		
		                        	
7.Mitochondria Activity and CXCR4Collaboratively Promote the Differentiation of CD11c + B Cells Induced by TLR9 in Lupus
Sung Hoon JANG ; Joo Sung SHIM ; Jieun KIM ; Eun Gyeol SHIN ; Jong Hwi YOON ; Lucy Eunju LEE ; Ho-Keun KWON ; Jason Jungsik SONG
Immune Network 2024;24(4):e25-
		                        		
		                        			
		                        			 Lupus is characterized by the autoantibodies against nuclear Ags, underscoring the importance of identifying the B cell subsets driving autoimmunity. Our research focused on the mitochondrial activity and CXCR4 expression in CD11c + B cells from lupus patients after ex vivo stimulation with a TLR9 agonist, CpG-oligodeoxyribonucleotide (ODN). We also evaluated the response of CD11c + B cells in ODN-injected mice. Post-ex vivo ODN stimulation, we observed an increase in the proportion of CD11chi cells, with elevated mitochondrial activity and CXCR4 expression in CD11c + B cells from lupus patients. In vivo experiments showed similar patterns, with TLR9 stimulation enhancing mitochondrial and CXCR4 activities in CD11chi B cells, leading to the generation of anti-dsDNA plasmablasts. The CXCR4 inhibitor AMD3100 and the mitochondrial complex I inhibitor IM156 significantly reduced the proportion of CD11c + B cells and autoreactive plasmablasts. These results underscore the pivotal roles of mitochondria and CXCR4 in the production of autoreactive plasmablasts. 
		                        		
		                        		
		                        		
		                        	
8.The Role of Inflammasome-Associated Innate Immune Receptors in Cancer
Ruby E. DAWSON ; Brendan J. JENKINS
Immune Network 2024;24(5):e38-
		                        		
		                        			
		                        			 Dysregulated activation of the innate immune system is a critical driver of chronic inflammation that is associated with at least 30% of all cancers. Innate immunity can also exert tumour-promoting effects (e.g. proliferation) directly on cancer cells in an intrinsic manner. Conversely, innate immunity can influence adaptive immunity-based anti-tumour immune responses via Ag-presenting dendritic cells that activate natural killer and cytotoxic T cells to eradicate tumours. While adaptive anti-tumour immunity has underpinned immunotherapy approaches with immune checkpoint inhibitors and chimeric Ag receptor-T cells, the clinical utility of innate immunity in cancer is underexplored. Innate immune responses are governed by pattern recognition receptors, which comprise several families, including Toll-like, nucleotide-binding oligomerization domain-containing (NOD)-like and absent-in-melanoma 2 (AIM2)-like receptors. Notably, a subset of NOD-like and AIM2-like receptors can form large multiprotein “inflammasome” complexes which control maturation of biologically active IL-1β and IL-18 cytokines. Over the last decade, it has emerged that inflammasomes can coordinate contrasting pro- and anti-tumour responses in cancer and non-cancer (e.g. immune, stromal) cells. Considering the importance of inflammasomes to the net output of innate immune responses, here we provide an overview and discuss recent advancements on the diverse role of inflammasomes in cancer that have underpinned their potential targeting in diverse malignancies. 
		                        		
		                        		
		                        		
		                        	
9.Current Developments in NK Cell Engagers for Cancer Immunotherapy:Focus on CD16A and NKp46
Min Hwa SHIN ; Eunha OH ; Dohsik MINN
Immune Network 2024;24(5):e34-
		                        		
		                        			
		                        			 NK cells are specialized immune effector cells crucial for triggering immune responses against aberrant cells. Although recent advancements have concentrated on creating or releasing T-cell responses specific to tumor Ags, the clinical advantages of this approach have been limited to certain groups of patients and tumor types. This emphasizes the need for alternative strategies. One pioneering approach involves broadening and enhancing anti-tumor immune responses by targeting innate immunity. Consequently, the advent of bi-, tri-, and multi-specific Abs has facilitated the advancement of targeted cancer immunotherapies by redirecting immune effector cells to eradicate tumor cells. These Abs enable the simultaneous binding of surface Ags on tumor cells and the activation of receptors on innate immune cells, such as NK cells, with the ability to facilitate Ab-dependent cellular cytotoxicity to enhance their immunotherapeutic effectiveness in patients with solid tumors.Here, we review the recent advances in NK cell engagers (NKCEs) focusing on NK cellactivating receptors CD16A and NKp46. In addition, we provide an overview of the ongoing clinical trials investigating the safety, efficacy, and potential of NKCEs. 
		                        		
		                        		
		                        		
		                        	
10.Th Pathways in Immune-Mediated Skin Disorders: A Guide for Strategic Treatment Decisions
Reinhart SPEECKAERT ; Arno BELPAIRE ; Jo LAMBERT ; Marijn SPEECKAERT ; Nanja van GEEL
Immune Network 2024;24(5):e33-
		                        		
		                        			
		                        			 In recent years, there have been significant breakthroughs in the identification of immunological components of skin diseases and in the development of immunomodulatory drugs. Novel therapies create exciting prospects for personalized care. This article provides an overview of the role played by Th1, Th2, Th17, and follicular Th pathways in the most common skin diseases. Additionally, it elucidates the impact of current and upcoming treatments on each of these signaling cascades. Skin diseases predominantly influenced by a single dominant Th pathway such as psoriasis and atopic dermatitis are well-suited for biologics. However, in many other disorders a complex interplay between different immune pathways exists. This can lead to inconsistent efficacy of biologics based on individual patient profiles. In case of activation of several Th pathways, it may be more suitable to consider conventional therapies or JAK inhibitors. Increasing immunological insights have transitioned from laboratory research to practical applications, a trend that is expected to continue growing in the future. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail