1.Effects of acupuncture on the hypothalamic-pituitary-ovarian axis and FSH/cAMP signaling pathway in aged rats.
Yaoyao ZHU ; Yaqian YIN ; Huanfang XU ; Li YANG ; Weixin LI ; Chenchen SU ; Rong ZHANG ; Yigong FANG
Chinese Acupuncture & Moxibustion 2025;45(2):200-208
OBJECTIVE:
To explore the mechanism of acupuncture on improving ovarian hypofunction in aged rats from two perspectives: the overall regulation of the hypothalamic-pituitary-ovarian (HPO) axis and the local ovarian follicle stimulating hormone (FSH)/cyclic adenosine monophosphate (cAMP) signaling pathway.
METHODS:
Six 3-month-old female SPF-grade Sprague-Dawley (SD) rats were selected as the blank group. Another twelve 9-month-old female SD rats were randomly divided into a model group and an acupuncture group, with six rats in each. The acupuncture group received acupuncture at "Baihui" (GV20), "Guanyuan" (CV4), and bilateral "Ciliao" (BL32) for 20 min per session, once every other day, for a total of 10 sessions. Vaginal smear tests were performed daily to observe the estrous cycle of the rats. Ovarian morphology was observed using HE staining, and follicles at various stages were counted. ELISA was used to detect levels of serum FSH, luteinizing hormone (LH), estradiol (E2), anti-müllerian hormone (AMH), hypothalamic gonadotropin-releasing hormone (GnRH), pituitary FSH and LH, and ovarian cAMP. Immunohistochemistry and Western blot were used to detect the protein expression of ovarian cAMP protein kinase catalytic subunit, FSH receptor (FSHR), and P450. Real-time quantitative PCR was used to measure mRNA expression levels of FSHR and P450 in ovarian tissue.
RESULTS:
Compared with the blank group, the model group showed an increased rate of estrous cycle disorder (P<0.01), reduced granulosa cell layers with blurred boundaries and disordered arrangement, decreased numbers of developing follicles at all stages, and increased numbers of atretic follicles (P<0.01); the serum levels of FSH and LH were increased (P<0.01), while E2 and AMH levels were decreased (P<0.01); the hypothalamic GnRH and pituitary FSH and LH levels were elevated (P<0.01), and ovarian cAMP level was decreased (P<0.01); the positive expression and protein expression of ovarian P450, cAMP protein kinase catalytic subunit, and FSHR were reduced (P<0.01), and ovarian FSHR and P450 mRNA expression was decreased (P<0.01). Compared with the model group, the acupuncture group showed a reduced rate of estrous cycle disorder (P<0.01), clear granulosa cell margins, increased numbers of primordial and secondary follicles, and decreased numbers of atretic follicles (P<0.01); the serum FSH and LH levels were decreased (P<0.01, P<0.05), while E2 and AMH levels were increased (P<0.05, P<0.01); the hypothalamic GnRH and pituitary FSH and LH levels were decreased (P<0.01, P<0.05), and ovarian cAMP level was increased (P<0.01); the positive expression and protein expression of ovarian P450, cAMP protein kinase catalytic subunit, and FSHR were elevated (P<0.01), and ovarian FSHR and P450 mRNA expression was increased (P<0.01).
CONCLUSION
Acupuncture could delay ovarian hypofunction in aged rats, possibly through regulating the HPO axis and the FSH/cAMP signaling pathway.
Animals
;
Female
;
Rats
;
Rats, Sprague-Dawley
;
Follicle Stimulating Hormone/genetics*
;
Acupuncture Therapy
;
Ovary/metabolism*
;
Signal Transduction
;
Humans
;
Cyclic AMP/metabolism*
;
Hypothalamo-Hypophyseal System/metabolism*
;
Aging/metabolism*
;
Hypothalamus/metabolism*
;
Pituitary Gland/metabolism*
;
Gonadotropin-Releasing Hormone/metabolism*
2.Regulatory effects of moxibustion at "Guanyuan" (CV4) on extragonadal estrogen and estrogen receptors in ovariectomized rats.
Qingchen ZHOU ; Xinyan GAO ; Kun LIU ; Bing ZHU
Chinese Acupuncture & Moxibustion 2025;45(12):1770-1776
OBJECTIVE:
To observe the regulatory effects of moxibustion at "Guanyuan" (CV4) on the synthesis of extragonadal estradiol (E2) and the expression of estrogen receptor (ER) in ovariectomized rats, aiming to explore the mechanism of moxibustion treatment for perimenopausal syndrome.
METHODS:
Forty-eight SD female rats of SPF grade were randomly divided into a sham-operation group, a model group and a moxibustion group, with 16 rats in each group. The model group and the moxibustion group underwent bilateral ovariectomy by the back incision method. Ten days after surgery, moxibustion was applied at "Guanyuan" (CV4) in the moxibustion group, 30 min each time, once a day for 10 days. After intervention, in the 3 groups, the body mass and uterus weight were measured; the serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and E2, as well as the skin and hypothalamus levels of E2 were detected by ELISA; the mRNA expression of aromatase (P450arom) in the skin and hypothalamus was detected by real-time PCR; the expression of ERα and ERβ in the hypothalamus, skin, and uterus was observed by immunofluorescence staining, and the density of positive cells was calculated using the Aipathwell digital pathology image analysis software.
RESULTS:
Compared with the sham-operation group, the body mass was increased (P<0.01) and the uterus weight was decreased (P<0.001) in the model group. Compared with the model group, the body mass was decreased in the moxibustion group (P<0.01). Compared with the sham-operation group, in the model group, the serum, hypothalamus and skin levels of E2 were decreased (P<0.01, P<0.05), while the serum levels of FSH and LH were increased (P<0.01); the expression of ERα and ERβ in the skin, hypothalamus and uterus was decreased (P<0.05, P<0.001). Compared with the model group, in the moxibustion group, the serum levels of E2 and LH, as well as the hypothalamus and skin levels of E2 were increased (P<0.05, P<0.01); the mRNA expression of P450arom, as well as the expression of ERα and ERβ in the skin and hypothalamus were increased (P<0.05).
CONCLUSION
Moxibustion at "Guanyuan" (CV4) reduces the body mass of ovariectomized rats by enhancing the synthesis of extragonadal E2 and increasing the expression of ER in the skin and hypothalamus, yet it does not alleviate uterine atrophy.
Animals
;
Female
;
Moxibustion
;
Rats
;
Ovariectomy
;
Acupuncture Points
;
Rats, Sprague-Dawley
;
Humans
;
Receptors, Estrogen/genetics*
;
Estrogens/metabolism*
;
Estradiol/metabolism*
;
Hypothalamus/metabolism*
;
Follicle Stimulating Hormone/blood*
;
Aromatase/genetics*
;
Luteinizing Hormone/blood*
;
Skin/metabolism*
3.Effects of psychological stress on inflammatory bowel disease via affecting the microbiota-gut-brain axis.
Yuhan CHEN ; Xiaofen CHEN ; Suqin LIN ; Shengjun HUANG ; Lijuan LI ; Mingzhi HONG ; Jianzhou LI ; Lili MA ; Juan MA
Chinese Medical Journal 2025;138(6):664-677
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory condition with chronic and relapsing manifestations and is characterized by a disturbance in the interplay between the intestinal microbiota, the gut, and the brain. The microbiota-gut-brain axis involves interactions among the nervous system, the neuroendocrine system, the gut microbiota, and the host immune system. Increasing published data indicate that psychological stress exacerbates the severity of IBD due to its negative effects on the microbiota-gut-brain axis, including alterations in the stress response of the hypothalamic-pituitary-adrenal (HPA) axis, the balance between the sympathetic nervous system and vagus nerves, the homeostasis of the intestinal flora and metabolites, and normal intestinal immunity and permeability. Although the current evidence is insufficient, psychotropic agents, psychotherapies, and interventions targeting the microbiota-gut-brain axis show the potential to improve symptoms and quality of life in IBD patients. Therefore, further studies that translate recent findings into therapeutic approaches that improve both physical and psychological well-being are needed.
Humans
;
Inflammatory Bowel Diseases/metabolism*
;
Stress, Psychological/microbiology*
;
Gastrointestinal Microbiome/physiology*
;
Brain/metabolism*
;
Hypothalamo-Hypophyseal System
;
Pituitary-Adrenal System
;
Animals
4.Research progress on biological clock-targeting small-molecule compounds for intervention in metabolic diseases.
Acta Physiologica Sinica 2025;77(4):641-652
The circadian rhythm regulates the 24-hour physiological and behavioral cycles through endogenous molecular clocks governed by core clock genes via the transcription-translation feedback loop (TTFL). In mammals, the suprachiasmatic nucleus (SCN) serves as the central pacemaker, coordinating the timing of physiological processes throughout the body by regulating clock genes such as CLOCK, BMAL1, PER, and CRY. The molecular clocks of peripheral tissues and cells are synchronized by the SCN through TTFLs to regulate metabolism, immunity, and energy homeostasis. Numerous studies indicate that circadian rhythm disruption is closely related to obesity, type 2 diabetes, metabolic syndrome and other diseases, and the mechanism involves the dysregulation of glucose and lipid metabolism, abnormal insulin signaling and low-grade inflammation. In recent years, small-molecule compounds targeting the core clock components such as CRY, REV-ERB, and ROR have been identified and shown potential to modulate metabolic diseases by stabilizing or inhibiting the activity of key clock proteins. This review summarizes the mechanisms and advances in these compounds, and explores the challenges and future directions for their clinical translation, providing insights for chronotherapy-based metabolic disease interventions.
Humans
;
Metabolic Diseases/physiopathology*
;
Animals
;
Circadian Rhythm/physiology*
;
Biological Clocks/drug effects*
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Suprachiasmatic Nucleus/physiology*
5.Circadian and non-circadian regulation of the male reproductive system and reproductive damage: advances in the role and mechanisms of clock genes.
Meng-Chao HE ; Ying-Zhong DAI ; Yi-Meng WANG ; Qin-Ru LI ; Si-Wen LUO ; Xi LING ; Tong WANG ; Jia CAO ; Qing CHEN
Acta Physiologica Sinica 2025;77(4):712-720
Recently, male reproductive health has attracted extensive attention, with the adverse effects of circadian disruption on male fertility gradually gaining recognition. However, the mechanism by which circadian disruption leads to damage to male reproductive system remains unclear. In this review, we first summarized the dual regulatory roles of circadian clock genes on the male reproductive system: (1) circadian regulation of testosterone synthesis via the hypothalamic-pituitary-testicular (HPT) and hypothalamic-pituitary-adrenal (HPA) axes; (2) non-circadian regulation of spermatogenesis. Next, we further listed the possible mechanisms by which circadian disruption impairs male fertility, including interference with the oscillatory function of the reproductive system, i.e., synchronization of the HPT axis, crosstalk between the HPT axis and the HPA axis, as well as direct damage to germ cells by disturbing the non-oscillatory function of the reproductive system. Future research using spatiotemporal omics, epigenomic assays, and neural circuit mapping in studying the male reproductive system may provide new clues to systematically unravel the mechanisms by which circadian disruption affects male reproductive system through circadian clock genes.
Male
;
Humans
;
Animals
;
Circadian Clocks/physiology*
;
Hypothalamo-Hypophyseal System/physiology*
;
Circadian Rhythm/genetics*
;
Spermatogenesis/physiology*
;
Pituitary-Adrenal System/physiology*
;
Testis/physiology*
;
Testosterone/biosynthesis*
;
CLOCK Proteins
;
Infertility, Male/physiopathology*
6.Identification of tissue distribution components and mechanism of antipyretic effect of famous classical formula Dayuanyin.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Rui LI ; Ming SU ; Li-Jie WANG ; Yu-Qing WANG ; Dan-Dan SUN ; Hui ZHANG ; Xin-Jun ZHANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(10):2810-2824
Based on the ultra performance liquid chromatography-quadrupole Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology, combined with related literature, databases, and reference material information, this study qualitatively analyzed the components of Dayuanyin in the tissue of rats after gavage and employed molecular docking technology to predict the rationality of the mechanism behind the antipyretic effect of the in vivo components in Dayuanyin. A total of 21, 26, 20, 21, 14, and 31 prototype components and 3, 16, 3, 7, 5, and 24 metabolites were identified from the heart, liver, spleen, lung, kidney, and hypothalamus of the rats, respectively, and the binding ability of key components and targets was further verified by molecular docking. The results showed that all components had good binding ability with targets. The established UPLC-Q-Exactive Orbitrap-MS could effectively and quickly identify the Dayuanyin components distributed in tissue and preliminarily identify their metabolites. Many components were identified in the hypothalamus, which suggested that the components delivered to the brain should be focused on in the study on Dayuanyin in the treatment of febrile diseases. The molecular docking technology was used to predict the rationality of the mechanism behind its antipyretic effect, which lays the foundation for the clarification of the material basis and action mechanism of Dayuanyin, the development of new preparations, and the prediction of quality markers.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Molecular Docking Simulation
;
Male
;
Antipyretics/metabolism*
;
Rats, Sprague-Dawley
;
Tissue Distribution
;
Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Hypothalamus/metabolism*
7.A neural circuit from paraventricular hypothalamic nucleus oxytocin neurons to trigeminal nucleus caudalis GABAergic neurons modulates pain sensitization in a mouse model of chronic migraine.
Houda CHEN ; Wanyun ZOU ; Xufeng XU ; Jiang BIAN
Journal of Zhejiang University. Medical sciences 2025;54(5):641-652
OBJECTIVES:
To investigate the role of a neural pathway from oxytocin (OXT) neurons in the paraventricular hypothalamic nucleus (PVN) to γ-aminobutyric acid (GABA) neurons (GABAergic neurons) in the trigeminal nucleus caudalis (TNC) in regulating pain sensitization in a mouse model of chronic migraine and to explore the underlying mechanisms.
METHODS:
A chronic migraine mouse model was established by intraperitoneal injection of nitroglycerin (NTG, 1 mg/mL, 10 mg/kg) on days 1, 3, 5, 7, and 9. The study consisted of four parts: PartⅠ: 24 male wild-type C57BL/6J mice were divided into four groups (n=6 in each), receiving single or repeated injection of NTG or saline, respectively. Immunofluorescence was used to detect c-Fos and OXT expression in the PVN. Part Ⅱ: 6 male OXT-Cre transgenic C57BL/6J mice were used for anterograde monosynaptic tracing combined with RNAscope and immunofluorescence to identify neural projections from PVN OXT neurons to TNC GABAergic neurons. Part Ⅲ: 30 male OXT-Cre transgenic C57BL/6J mice were bilaterally injected Cre-dependent chemogenetic activation virus into the PVN. These mice were randomly divided into five groups, with six mice in each group. Mice in the clozapine N-oxide (CNO) group and the control group were intra-peritoneally injected with 0.1 mg/mL of CNO solution (1 mg/kg) and the same volume of isotonic normal saline, respectively. 3 hours after the injection, the brain tissues were harvest and c-Fos immunofluorescence staining was performed to verify the efficiency of chemogenetic activation virus. Mice in the model control group and the CNO activated model group were subjected to chronic migraine modeling, with bilateral TNC injection of isotonic normal saline and CNO, respectively, on day 10. The mice in the negative control group were bilaterally intra-TNC injected with isotonic normal saline. After 30 minutes, the Von-Frey filament and acetone tests were used to assess the mechanical pain threshold and cold pain response time in the periorbital region of the mice in these three groups. Part Ⅳ: 24 male OXT-Cre transgenic C57BL/6J mice were bilaterally injected with the Cre-dependent chemogenetic activation virus into the PVN. These mice were randomly divided into four groups, with six mice in each group. Mice in the model control group, the CNO activated model group and the atosiban group were subjected to chronic migraine modeling. On day 10, mice in the negative control group and the model control group were intraperitoneally injected with isotonic normal saline, while mice in the CNO activated model group and the atosiban group were intraperitoneally injected with CNO. After 15 minutes, mice in the atosiban group were bilaterally intra-TNC injected with atosiban, while mice in other three groups were bilaterally intra-TNC injected with isotonic normal saline containing 1% dimethyl sulfoxide. After 15 minutes, the Von-Frey filament and acetone tests were used to assess the mechanical pain threshold and cold pain response time in the periorbital region of the mice. The GABA content in the bilateral TNC was detected by high-performance liquid chromatography (HPLC).
RESULTS:
Mice with chronic migraine models exhibited reduced periorbital mechanical pain thresholds and increased periorbital cold pain reaction time, accompanied by an increase in both the number of c-Fos+ neurons and the percentage of c-Fos+ OXT neurons in the PVN (all P<0.05). The anterograde tracing virus and RNAscope combined with immunofluorescence staining showed that PVN OXT neurons projected to TNC GABAergic neurons. Immuno-fluorescence staining demonstrated that compared with the control group, the percentage of c-Fos+ OXT neurons in the PVN of CNO group increased (P<0.05). In bilateral intra-TNC drug administration experiments, compared with the model control group, the periorbital mechanical pain threshold increased, and the periorbital cold pain reaction time decreased in the CNO activated model group (both P<0.05). In intraperitoneal drug administration experiments, compared with the CNO activate model group, the periorbital mechanical pain threshold decreased, and the periorbital cold pain reaction time increased in the atosiban group (both P<0.05). HPLC analysis showed that, compared with the negative control group, the model control group and the atosiban group, GABA level of TNC in the CNO activated model group increased (all P<0.05).
CONCLUSIONS
PVN OXT neurons exert a descending facilitatory effect on GABAergic neurons in the TNC via OXT release, thereby ameliorating pain sensitization in chronic migraine.
Animals
;
Paraventricular Hypothalamic Nucleus/physiopathology*
;
Male
;
Mice, Inbred C57BL
;
Migraine Disorders/physiopathology*
;
Mice
;
GABAergic Neurons/physiology*
;
Oxytocin/physiology*
;
Disease Models, Animal
;
Neurons/physiology*
;
Mice, Transgenic
;
Neural Pathways
;
Chronic Disease
8.Wheat-grain moxibustion at the Guanyuan point to regulate low testosterone and hypothalamic-pituitary-gonadal axis in naturally aged mice.
Meng-Fan CUI ; Bing-Zhe MA ; Zhi-Yang YIN ; Yu-Tong QIAN ; Dan-Li JIAO ; Shi-Min LIU
National Journal of Andrology 2025;31(2):157-164
OBJECTIVE:
To investigate the effects of wheat-grain moxibustion at the Guanyuan point on testosterone (T) synthesis and the hypothalamic-pituitary-gonadal (HPG) axis in naturally aged mice.
METHODS:
We fed 40 twelve-month-old SPF male C57BL/6J mice with a normal diet for 3 months, randomized them into a moxibustion and an aged group of an equal number, and selected 7 four-month-old ones as young controls. We treated the animals of the moxibustion group by wheat-grain moxibustion at the Guanyuan point, once 5 moxibustion sticks, qd, 5 times a week, and fed those of the aged group normally, all for 12 weeks. After treatment, we obtained the testicular index of the mice, observed the histomorphology of the testis tissue by HE staining, measured the contents of T in the testis, gonadotropin-releasing hormone (GnRH) in the hypothalamus and total T (tT), free T (fT), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the serum by ELISA, and determined the expressions of silence information regulator-1 (SIRT1), P53, glutathione peroxidase (GPX4) and cholesterol side-chain?cleavage enzyme (CYP11A1) in the testis by Western blot.
RESULTS:
Compared with the young controls, the mice in the aged group showed obviously losing and dull hair, energy declination, loose structure of the spermatogenic tubule with different degrees of cell loss and rupture, reduced testicular index, and evident aging phenotype. In comparison with the aged mice, the animals of the moxibustion group were fairly energetic and exhibited distinct structure of the spermatogenic tubules, orderly arranged and highly differentiated cells at all levels, significantly increased T level, up-regulated expressions of SIRT1, GPX4 and CYP11A1, and down-regulated expression of P53 in testis tissue, and elevated levels of GnRH, FSH, LH, tT and fT in the HPG axis.
CONCLUSION
Wheat-grain moxibustion at the Guanyuan point protects testosterone synthesis in the testis tissue of naturally aged mice, promotes negative feedback regulation of the HPG axis, and improves low testosterone.
Animals
;
Male
;
Moxibustion
;
Mice
;
Testosterone/metabolism*
;
Mice, Inbred C57BL
;
Testis/metabolism*
;
Hypothalamo-Hypophyseal System/metabolism*
;
Triticum
;
Gonadotropin-Releasing Hormone/metabolism*
;
Luteinizing Hormone/blood*
;
Follicle Stimulating Hormone/blood*
;
Aging
;
Hypothalamus/metabolism*
;
Acupuncture Points
;
Sirtuin 1/metabolism*
;
Hypothalamic-Pituitary-Gonadal Axis
9.Impact and action mechanisms of obesity on male reproductive function: An update.
Ran WEI ; Zhe-Tao LANG ; Er-Hui WANG
National Journal of Andrology 2025;31(4):357-362
The adverse effects of obesity on male reproductive function are mainly manifested as the abnormal development of the reproductive system, decrease of testosterone level, decline of sperm quality, and impact on the health of offspring, while its regulatory mechanism is far from being clarified. This paper expounds the influence of obesity on the male reproductive system in the aspects of population epidemiology and animal experiments, presents an overview on the action mechanisms of obesity from the perspectives of the hypothalamus-pituitary-testis axis, blood-testis barrier, inflammatory reaction, oxidative stress, testicular germ cell apoptosis, and impact of paternal obesity on the health of offspring, aiming to shed some light on the clinical treatment and prevention of obesity-related male reproductive dysfunction.
Male
;
Obesity/physiopathology*
;
Humans
;
Animals
;
Hypothalamo-Hypophyseal System
;
Testis/physiopathology*
;
Oxidative Stress
;
Infertility, Male/etiology*
;
Reproduction
;
Blood-Testis Barrier
10.Potential biological mechanisms underlying spaceflight-induced depression symptoms in astronauts.
Zejun LI ; Jin LIU ; Bangshan LIU ; Mi WANG ; Yumeng JU ; Yan ZHANG
Journal of Central South University(Medical Sciences) 2025;50(8):1355-1362
Long-term spaceflight exposes astronauts to multiple extreme environmental factors, such as cosmic radiation, microgravity, social isolation, and circadian rhythm disruption, that markedly increase the risk of depressive symptoms, posing a direct threat to mental health and mission safety. However, the underlying biological mechanisms remain complex and incompletely understood. The potential mechanisms of spaceflight-induced depressive symptoms involve multiple domains, including alterations in brain structure and function, dysregulation of neurotransmitters and neurotrophic factors, oxidative stress, neuroinflammation, neuroendocrine system imbalance, and gut microbiota disturbances. Collectively, these changes may constitute the biological foundation of depressive in astronauts during spaceflight. Space-related stressors may increase the risk of depressive symptoms through several pathways: impairing hippocampal neuroplasticity, suppressing dopaminergic and serotonergic system function, reducing neurotrophic factor expression, triggering oxidative stress and inflammatory responses, activating the hypothalamic-pituitary-adrenal axis, and disrupting gut microbiota homeostasis. Future research should integrate advanced technologies such as brain-computer interfaces to develop individualized monitoring and intervention strategies, enabling real-time detection and effective prevention of depressive symptoms to safeguard astronauts' psychological well-being and mission safety.
Space Flight
;
Humans
;
Astronauts/psychology*
;
Depression/physiopathology*
;
Gastrointestinal Microbiome
;
Weightlessness/adverse effects*
;
Oxidative Stress
;
Brain/physiopathology*
;
Hypothalamo-Hypophyseal System
;
Neuronal Plasticity
;
Pituitary-Adrenal System

Result Analysis
Print
Save
E-mail