1.Current Status of Traditional Chinese Medicine Diagnosis and Treatment of Inflammatory Bowel Disease and the Research on Mechanism
Junxiang LI ; Hong SHEN ; Tangyou MAO ; Lei ZHU ; Jiaqi ZHANG ; Zhibin WANG ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):103-110
In recent years, traditional Chinese medicine (TCM) has achieved significant progress in the treatment of inflammatory bowel disease (IBD). A comprehensive literature search was conducted covering the period from January 1, 2010, to December 30, 2024, across Chinese databases including China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP China Science and Technology Journal Database, and the Chinese Biomedical Literature Service System, as well as international databases such as PubMed, Web of Science, and Embase. The clinical applications and mechanistic studies of TCM in IBD were systematically reviewed. The current status of TCM research on the etiology and pathogenesis of IBD, innovative clinical practices, and multimodal therapeutic approaches, including Chinese herbal formulas, single herbs or active compounds, acupuncture, herbal retention enema, and acupoint application, were summarized, together with their synergistic effects when combined with western medical treatments. The development and application of Chinese patent medicines for IBD are undergoing a profound transition from efficacy validation to mechanistic exploration. Mechanistic studies on the effects of TCM in IBD mainly focus on regulating gut microbiota homeostasis, repairing the intestinal mucosal barrier, and modulating intestinal immune balance. Furthermore, future research directions for TCM-based IBD management are proposed, including the establishment of TCM diagnostic and treatment models, expanding integrated applications of external and internal TCM therapies, innovating personalized treatment strategies, and advancing drug development. These efforts aim to provide insights for the standardized and precision-oriented development of TCM in the diagnosis and treatment of IBD.
2.Current Status and Strategies of Integrated Traditional Chinese and Western Medicine in the Treatment of Helicobacter pylori Infection
Xuezhi ZHANG ; Xia DING ; Zhen LIU ; Hui YE ; Xiaofen JIA ; Hong CHENG ; Zhenyu WU ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):111-116
This paper systematically reviews the current status of integrated traditional Chinese and western medicine in the treatment of Helicobacter pylori (Hp) infection, as well as recent progress in clinical and basic research both in China and internationally. It summarizes the advantages of traditional Chinese medicine (TCM) in Hp infection management, including improving Hp eradication rates, enhancing antibiotic sensitivity, reducing antimicrobial resistance, decreasing drug-related adverse effects, and ameliorating gastric mucosal lesions. These advantages are particularly evident in patients who are intolerant to bismuth-containing regimens, those with refractory Hp infection, and individuals with precancerous gastric lesions. An integrated, whole-process management approach and individualized, staged comprehensive treatment strategies combining TCM and western medicine are proposed for Hp infection. Future prevention and control of Hp infection should adopt an integrative Chinese-western medical strategy, emphasizing prevention, strengthening primary care, implementing proactive long-term monitoring, optimizing screening strategies, and advancing the development of novel technologies and mechanistic studies of Chinese herbal interventions. These efforts aim to provide a theoretical basis and practical pathways for the establishment and improvement of Hp infection prevention and control systems.
3.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
4.Proteomics combined with bioinformatics analysis of protein markers of dry eye
Yanting YANG ; Yajun SHI ; Guang YANG ; Haiyang JI ; Jie LIU ; Jue HONG ; Dan ZHANG ; Xiaopeng MA
International Eye Science 2025;25(1):104-111
AIM:To analyze differential proteins associated with the pathogenesis of dry eye(DE)using bioinformatics methods, in order to reveal their potential molecular mechanisms.METHODS: Articles published in PubMed and EMBASE databases from the inception of the database to August 31, 2023, that used proteomic methods to detect protein expression in clinical samples of dry eye were searched. Differential proteins were selected and further analyzed using the STRING database and Cytoscape software for hub gene screening and module analysis. Protein-protein interaction(PPI)analysis, gene ontology(GO)functional annotation, and Kyoto encyclopedia of genes and genomes(KEGG)pathway enrichment analysis were performed.RESULTS: A total of 21 articles were included, identifying 74 differentially expressed proteins. The most frequently occurring differential proteins were calgranulin A(SA1008), lipocalin-1(LCN1), lysozyme C(LYZ), mammaglobin-B(SCGB2A1), proline-rich protein 4(PRR4), transferrin(TF), and calgranulinB(S100A9). The top 10 hub genes were serum albumin(ALB), tumor necrosis factor(TNF), interleukin 6(IL6), IL1B, IL8, matrix metalloproteinase 9(MMP9), alpha-1-antitrypsin(SERPINA1), IL10, complement component 3(C3), and lactotransferrin(LTF). Module analysis suggested MMP9 and PRR4 as seed genes. KEGG analysis showed that differential proteins were mainly enriched in the IL17 signaling pathway(61.9%).CONCLUSION: The results reveal potential molecular targets and pathways for DE and confirm the association between the pathogenesis of DE and inflammation. Further in-depth research is needed to confirm the significance of these biomarkers in clinical practice.
5.Effect and mechanism of Qingxue xiaozhi jiangtang formula on insulin resistance in rats with type 2 diabetes mellitus
Yuxin HONG ; Lei ZHANG ; Mingxue ZHOU ; Sinai LI ; Li LIN ; Meng ZHANG ; Zixuan GUO ; Weihong LIU
China Pharmacy 2025;36(1):24-29
OBJECTIVE To investigate the improvement effect and potential mechanism of Qingxue xiaozhi jiangtang formula on insulin resistance (IR) in type 2 diabetes mellitus (T2DM) rats. METHODS T2DM rat model was established by intraperitoneal injection of 30 mg/kg streptozotocin combined with high-fat and high-sugar diet. The rats were randomly divided into normal control group, model group, Qingxue xiaozhi jiangtang formula low-dose and high-dose groups (6.525, 13.05 g/kg, calculated by raw material) and metformin group (positive control, 0.18 g/kg), with 8 rats in each group. Administration groups were given relevant medicine intragastrically; normal control group and model group were given constant volume of normal saline intragastrically, once a day, for consecutive 6 weeks. Body mass and fasting blood glucose (FBG) were determined, and oral glucose tolerance test was conducted. Serum fasting insulin (FINS) level was measured to calculate the insulin resistance index (HOMA-IR) and insulin sensitivity index (ISI). Additionally, the level of serum lipids, liver function, oxidative stress indicators and inflammatory factors were assessed. The phosphorylation levels of kinase R-like endoplasmic reticulum kinase (PERK) and forkhead box O1 (FOXO1) protein in liver tissue of rats were determined. RESULTS Compared with model group, the body weight, ISI, the levels of high-density lipoprotein cholesterol and superoxide dismutase were increased significantly in Qingxue xiaozhi jiangtang formula high-dose group and metformin group (P<0.05); FBG, blood glucose level at 120 minutes of glucose loading, area under the curve of glucose, FINS, HOMA-IR, low-density lipoprotein cholesterol, total cholesterol, triglyceride, alanine transaminase, aspartate transaminase, alkaline phosphatase, malondialdehyde, interleukin-6, tumor necrosis factor-α, and C-reactive protein levels were significantly reduced (P< Δ0.05); the pathological damage of liver tissue had significantlyimproved, and the phosphorylation levels of PERK and FOXO1 proteins in liver tissue were significantly decreased (P<0.05). CONCLUSIONS Qingxue xiaozhi jiangtang formula can regulate glucose and lipid metabolism, inflammation factor and oxidative stress levels, and alleviate insulin resistance in T2DM rats. Its mechanism of action may be related to the inhibition of the PERK/FOXO1 signaling pathway.
6.Pharmacoeconomic evaluation of finerenone combined with standard treatment regimen in the treatment of diabetic nephropathy
Hai LIANG ; Runan XIA ; Panpan DI ; Mengmeng ZHAO ; Pengcheng ZHANG ; Yashen HOU ; Hong ZHANG ; Wei WU ; Miao YANG
China Pharmacy 2025;36(1):86-90
OBJECTIVE To evaluate the cost-effectiveness of finerenone combined with standard treatment regimen in the treatment of diabetic nephropathy (DN). METHODS From the perspective of healthcare service providers, a Markov model was established to simulate the dynamic changes of each stage in DN patients who received finerenone combined with the standard treatment regimen or the standard treatment regimen alone based on the phase Ⅲ clinical trial study of finerenone for DN. Markov model was used to perform the cost-effectiveness of long-term effects and the costs of the two therapies with a simulation cycle of 4 months, a simulation period of 15 years and an annual discount rate of 5%. At the same time, one-way sensitivity analysis and probability sensitivity analysis were performed, and the stability of the results was validated. RESULTS Accumulative cost of the standard treatment regimen was 579 329.54 yuan, and the accumulative utility was 8.052 4 quality-adjusted life year (QALYs); the accumulative cost of finerenone combined with the standard treatment regimen was 332 520.61 yuan, and the accumulative utility was 8.187 4 QALYs. Finerenone combined with the standard treatment regimen was more cost-effective. The results of one-way sensitivity analysis showed that dialysis status utility value, DN stage 3 utility value and DN stage 4 utility value had a great influence on the incremental cost-effectiveness ratio, but did not affect the robustness of the model. The results of probability sensitivity analysis showed that finerenone combined with the standard treatment regimen was more cost-effective with 100% probability. CONCLUSIONS For DN patients, finerenone combined with the standard treatment regimen is more cost-effective as an absolute advantage option.
7.Ideas of Traditional Chinese Medicine Treatment of Pancreatic Endocrine and Exocrine Co-Morbidities from the Attributes of Zang-Fu Organs of Pancreas
Yulin LENG ; Jiacheng YIN ; Xianglong LI ; Jiahong ZHANG ; Yi SU ; Hong GAO ; Chunguang XIE ; Xiaoxu FU
Journal of Traditional Chinese Medicine 2025;66(2):145-149
Based on advancements in modern medical research regarding the intricate connection between the endocrine and exocrine functions of the pancreas, as well as the relationship between pancreatic functions and traditional Chinese medicine (TCM) spleen system, this paper discussed the categorization of the pancreas. It is proposed that the pancreas is neither a true zang organ nor a fu organ, but possessed the attributes of an extraordinary fu-organ and can be classified under the spleen. The spleen governs transportation and transformation, ascent of the clear and dispersion of essence, which encompasses the endocrine and exocrine functions, and pancreatic enzymes and glucose-regulating hormones form the material basis for the spleen's function of dispersing essence. Diseases of the pancreas exhibit characteristics of both zang-organ deficiency and fu-organ excess, so treatment should simultaneously supplement zang-organ disease and regulate fu-organ disease when pancreas showing endocrine and exocrine co-morbidities, with focus on restoring the pancreas (spleen)'s dispersing essence function. Therapeutic strategies include supplementing spleen qi, nourishing spleen yin to strengthen spleen earth, unblocking spleen collaterals, raising spleen yang, and removing spleen turbidity to support the spleen's dispersing essence function, so as to replenish the essential qi of zang-fu organs, ensure their distribution throughout the body, and improve the endocrine and exocrine functions of the pancreas.
8.Alternative Polyadenylation in Mammalian
Yu ZHANG ; Hong-Xia CHI ; Wu-Ri-Tu YANG ; Yong-Chun ZUO ; Yong-Qiang XING
Progress in Biochemistry and Biophysics 2025;52(1):32-49
With the rapid development of sequencing technologies, the detection of alternative polyadenylation (APA) in mammals has become more precise. APA precisely regulates gene expression by altering the length and position of the poly(A) tail, and is involved in various biological processes such as disease occurrence and embryonic development. The research on APA in mammals mainly focuses on the following aspects:(1) identifying APA based on transcriptome data and elucidating their characteristics; (2) investigating the relationship between APA and gene expression regulation to reveal its important role in life regulation;(3) exploring the intrinsic connections between APA and disease occurrence, embryonic development, differentiation, and other life processes to provide new perspectives and methods for disease diagnosis and treatment, as well as uncovering embryonic development regulatory mechanisms. In this review, the classification, mechanisms and functions of APA were elaborated in detail and the methods for APA identifying and APA data resources based on various transcriptome data were systematically summarized. Moreover, we epitomized and provided an outlook on research on APA, emphasizing the role of sequencing technologies in driving studies on APA in mammals. In the future, with the further development of sequencing technology, the regulatory mechanisms of APA in mammals will become clearer.
9.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
10.Acute Inflammatory Pain Induces Sex-different Brain Alpha Activity in Anesthetized Rats Through Optically Pumped Magnetometer Magnetoencephalography
Meng-Meng MIAO ; Yu-Xuan REN ; Wen-Wei WU ; Yu ZHANG ; Chen PAN ; Xiang-Hong LIN ; Hui-Dan LIN ; Xiao-Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):244-257
ObjectiveMagnetoencephalography (MEG), a non-invasive neuroimaging technique, meticulously captures the magnetic fields emanating from brain electrical activity. Compared with MEG based on superconducting quantum interference devices (SQUID), MEG based on optically pump magnetometer (OPM) has the advantages of higher sensitivity, better spatial resolution and lower cost. However, most of the current studies are clinical studies, and there is a lack of animal studies on MEG based on OPM technology. Pain, a multifaceted sensory and emotional phenomenon, induces intricate alterations in brain activity, exhibiting notable sex differences. Despite clinical revelations of pain-related neuronal activity through MEG, specific properties remain elusive, and comprehensive laboratory studies on pain-associated brain activity alterations are lacking. The aim of this study was to investigate the effects of inflammatory pain (induced by Complete Freund’s Adjuvant (CFA)) on brain activity in a rat model using the MEG technique, to analysis changes in brain activity during pain perception, and to explore sex differences in pain-related MEG signaling. MethodsThis study utilized adult male and female Sprague-Dawley rats. Inflammatory pain was induced via intraplantar injection of CFA (100 μl, 50% in saline) in the left hind paw, with control groups receiving saline. Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection. For MEG recording, anesthetized rats had an OPM positioned on their head within a magnetic shield, undergoing two 15-minute sessions: a 5-minute baseline followed by a 10-minute mechanical stimulation phase. Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms, generating spectrograms focused on the 4-30 Hz frequency range. ResultsMEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared, before and after saline/CFA injections. Mechanical stimulation elevated alpha activity in both male and female rats pre- and post-saline/CFA injections. Saline/CFA injections augmented average power in both sexes compared to pre-injection states. Remarkably, female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states. Furthermore, despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment, female rats displayed higher average power than males in the resting state after CFA injection. ConclusionThese results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts. Our study exhibits sex differences in alpha activities following CFA injection, highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state. Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals. In addition, the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.

Result Analysis
Print
Save
E-mail