1.A novel homozygous mutation of CFAP300 identified in a Chinese patient with primary ciliary dyskinesia and infertility.
Zheng ZHOU ; Qi QI ; Wen-Hua WANG ; Jie DONG ; Juan-Juan XU ; Yu-Ming FENG ; Zhi-Chuan ZOU ; Li CHEN ; Jin-Zhao MA ; Bing YAO
Asian Journal of Andrology 2025;27(1):113-119
Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.466G>T, in cilia- and flagella-associated protein 300 ( CFAP300 ) resulting in a stop codon (p.Glu156*) through whole-exome sequencing (WES). The proband had a PCD phenotype with laterality defects and immotile sperm flagella displaying a combined loss of the inner dynein arm (IDA) and outer dynein arm (ODA). Bioinformatic programs predicted that the mutation is deleterious. Successful pregnancy was achieved through intracytoplasmic sperm injection (ICSI). Our results expand the spectrum of CFAP300 variants in PCD and provide reproductive guidance for infertile couples suffering from PCD caused by them.
Adult
;
Female
;
Humans
;
Male
;
Pregnancy
;
China
;
Ciliary Motility Disorders/genetics*
;
Codon, Nonsense
;
East Asian People/genetics*
;
Exome Sequencing
;
Homozygote
;
Infertility, Male/genetics*
;
Kartagener Syndrome/genetics*
;
Pedigree
;
Sperm Injections, Intracytoplasmic
;
Cytoskeletal Proteins/genetics*
2.A novel homozygous splicing mutation in AK7 causes multiple morphological abnormalities of sperm flagella in patients from consanguineous Pakistani families.
Ansar HUSSAIN ; Huan ZHANG ; Muhammad ZUBAIR ; Wasim SHAH ; Khalid KHAN ; Imtiaz ALI ; Yousaf RAZA ; Aurang ZEB ; Tanveer ABBAS ; Nisar AHMED ; Fazal RAHIM ; Ghulam MUSTAFA ; Meftah UDDIN ; Nadeem ULLAH ; Musavir ABBAS ; Muzammil Ahmad KHAN ; Hui MA ; Bo YANG ; Qing-Hua SHI
Asian Journal of Andrology 2025;27(2):189-195
Multiple morphological abnormalities of the flagella (MMAF) represent a severe form of sperm defects leading to asthenozoospermia and male infertility. In this study, we identified a novel homozygous splicing mutation (c.871-4 ACA>A) in the adenylate kinase 7 (AK7) gene by whole-exome sequencing in infertile individuals. Spermatozoa from affected individuals exhibited typical MMAF characteristics, including coiled, bent, short, absent, and irregular flagella. Transmission electron microscopy analysis showed disorganized axonemal structure and abnormal mitochondrial sheets in sperm flagella. Immunofluorescence staining confirmed the absence of AK7 protein from the patients' spermatozoa, validating the pathogenic nature of the mutation. This study provides direct evidence linking the AK7 gene to MMAF-associated asthenozoospermia in humans, expanding the mutational spectrum of AK7 and enhancing our understanding of the genetic basis of male infertility.
Humans
;
Male
;
Sperm Tail/ultrastructure*
;
Homozygote
;
Consanguinity
;
Asthenozoospermia/pathology*
;
Infertility, Male/genetics*
;
Mutation
;
Pakistan
;
Adenylate Kinase/genetics*
;
Adult
;
Pedigree
;
RNA Splicing
;
Exome Sequencing
;
Spermatozoa
3.Novel homozygous SPAG17 variants cause human male infertility through multiple morphological abnormalities of spermatozoal flagella related to axonemal microtubule doublets.
Tao LIU ; Fazal RAHIM ; Meng-Lei YANG ; Meftah UDDIN ; Jing-Wei YE ; Imtiaz ALI ; Yousaf RAZA ; Abu MANSOOR ; Muhammad SHOAIB ; Mujahid HUSSAIN ; Ihsan KHAN ; Basit SHAH ; Asad KHAN ; Ahmad NISAR ; Hui MA ; Bo XU ; Wasim SHAH ; Qing-Hua SHI
Asian Journal of Andrology 2025;27(2):245-253
Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella (MMAF). Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement. Mammalian sperm-associated antigen 17 ( SPAG17 ) encodes a conserved axonemal protein of cilia and flagella, forming part of the C1a projection of the central apparatus, with functions related to ciliary/flagellar motility, skeletal growth, and male fertility. This study investigated two novel homozygous SPAG17 mutations (M1: NM_206996.2, c.829+1G>T, p.Asp212_Glu276del; and M2: c.2120del, p.Leu707*) identified in four infertile patients from two consanguineous Pakistani families. These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa. Quantitative real-time polymerase chain reaction (PCR) of patients' spermatozoa also revealed a significant decrease in SPAG17 mRNA expression, and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella. However, no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients. Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls. Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17 (SPATA17), a component of the C1a projection, and sperm-associated antigen 6 (SPAG6), a marker of the spring layer, revealed disrupted expression of both proteins in the patients' spermatozoa. Altogether, these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme, expanding the phenotypic spectrum of SPAG17 mutations in humans.
Humans
;
Male
;
Infertility, Male/pathology*
;
Sperm Tail/ultrastructure*
;
Homozygote
;
Microtubule-Associated Proteins/genetics*
;
Axoneme/genetics*
;
Spermatozoa/ultrastructure*
;
Adult
;
Mutation
;
Sperm Motility/genetics*
;
Pedigree
;
Microtubules
;
Microtubule Proteins/genetics*
4.Effects of a homozygous missense mutation in the GNE gene p.V543M on cell phenotype and its mechanisms.
Ruolan WU ; Huilong LI ; Pingyun WU ; Qi YANG ; Xueting WAN ; Yuan WU
Journal of Central South University(Medical Sciences) 2025;50(1):105-118
OBJECTIVES:
Uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy is a progressive neurodegenerative disease associated with homozygous or compound heterozygous missense mutations in the GNE gene. This study aims to explore the impact of the homozygous p.V543M mutation in on cell phenotype and to gain preliminary insights into the underlying mechanisms.
METHODS:
Human embryonic kidney 293T (HEK 293T) cells were used to construct wild-type (WT-GNE) and mutant (MUT-GNE) GNE overexpression models. Western blotting and immunofluorescence were used to assess GNE protein expression levels and subcellular localization. Cell adhesion, proliferation, apoptosis, and mitochondrial membrane potential were evaluated using the cell counting kit-8 (CCK-8) assay, crystal violet staining, flow cytometry, Hoechst 33342/propidium iodide (PI) staining, and tetramethylrhodamine ethyl ester (TMRE) staining. Sialic acid synthesis levels and GNE enzymatic activity were measured, and the mRNA expression of sialic acid biosynthesis-related enzymes was quantified by real-time PCR.
RESULTS:
Western blotting confirmed successful establishment of GNE overexpression models. Immunofluorescence showed significantly reduced co-localization of GNE protein with Golgin-97 in the MUT-GNE group compared to WT-GNE (Pearson's correlation coefficient: 0.65±0.08 vs 0.83±0.06, P<0.05). Compared with WT-GNE, cells in the MUT-GNE group exhibited increased adhesion, decreased proliferation, and reduced mitochondrial membrane potential (P<0.05). No significant differences in apoptosis were observed between groups. The MUT-GNE group showed reduced sialic acid production, significantly decreased kinase activity, and downregulated transcription of sialic acid biosynthesis-related enzymes compared to WT-GNE (P<0.001).
CONCLUSIONS
The p.V543M mutation in the GNE gene alters cellular phenotype by reducing GNE enzymatic activity and the transcription of sialic acid biosynthesis enzymes, ultimately impairing sialic acid production.
Humans
;
Mutation, Missense
;
HEK293 Cells
;
Apoptosis/genetics*
;
Phenotype
;
Multienzyme Complexes/metabolism*
;
Cell Proliferation
;
Homozygote
;
Cell Adhesion/genetics*
;
Distal Myopathies/genetics*
5.Recurrent eosinophilia with a novel homozygous ARPC1B mutation.
Gamze SONMEZ ; Baris ULUM ; Ates Kutay TENEKECI ; Canan CAKA ; Ali ŞAHIN ; Alp KAZANCIOĞLU ; Begum OZBEK ; İsmail YAZ ; Saliha ESENBOĞA ; Deniz ÇAĞDAŞ
Frontiers of Medicine 2025;19(1):174-180
Cytoskeletal network dysregulation is a pivotal determinant in various immunodeficiencies and autoinflammatory conditions. This report reviews the significance of actin remodeling in disease pathogenesis, focusing on the Arp2/3 complex and its regulatory subunit actin related protein 2/3 complex subunit 1B (ARPC1B). A spectrum of cellular dysfunctions associated with ARPC1B deficiency, impacting diverse immune cell types, is elucidated. The study presents a patient featuring recurrent and persistent eosinophilia attributed to homozygous ARPC1B mutation alongside concomitant compound heterozygous cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. We used ARPC1B antibody to stain the patient's peripheral blood lymphocytes and those of the control. The defect in the ARPC1B gene in the present patient caused absent/low expression by immunofluorescence microscopy. The intricate interplay between cytoskeletal defects and immunological manifestations underscores the complexity of disease phenotypes, warranting further exploration for targeted therapeutic strategies.
Humans
;
Actin-Related Protein 2-3 Complex/genetics*
;
Cystic Fibrosis Transmembrane Conductance Regulator/genetics*
;
Eosinophilia/genetics*
;
Homozygote
;
Mutation
;
Recurrence
6.Crigler-Najjar syndrome type 2 complicating cholecystitis in a patient with UGT1A1 gene double homozygous mutations.
Jianhui ZHANG ; Rongrong CHEN ; Xiang CHEN ; Ying CHEN ; Qilin CHEN ; Shiyun LU ; Jiewei LUO ; Xiaoling ZHENG ; Mengshi CHEN
Frontiers of Medicine 2025;19(4):675-680
Crigler-Najjar syndrome (CNS) and Gilbert syndrome (GS; OMIM: 143500) are rare autosomal recessive diseases that cause unconjugated hyperbilirubinemia due to decreased UGT1A1 enzyme activity. Crigler-Najjar syndrome type 2 (CNS2; OMIM: 606785) increases the risk of gallbladder stone formation and cholecystitis, while GS seldom causes health issues. We found a 28-year-old male patient with recurring right upper abdomen pain who experienced persistent jaundice from birth. CNS2 with gallbladder stones and cholecystitis was diagnosed after genetic testing revealed rare double homozygous mutations A(TA)7TAA (rs3064744) and P229Q (rs35350960) in the UGT1A1 gene. After pedigree investigation, we found that the patient's parents with modestly increased bilirubin had compound heterozygous mutations A(TA)7TAA and P229Q, which were GS. Bioinformatics analysis showed that A(TA)7TAA is in the TATA-box region of the gene UGT1A1 promoter, affecting gene transcriptional initiation, whereas P229Q modifies protein three-dimensional structure and may be harmful. In this pedigree, double homozygous mutations have a more severe phenotype than compound heterozygous mutations. Inherited causes of hyperbilirubinemia should be suspected after ruling out biliary obstruction, and early bilirubin reduction (< 103 µmol/L (6 mg/dL)) may reduce the risk of complications like cholecystitis in CNS2 patients, though further studies with longer follow-up are needed to confirm this observation.
Humans
;
Male
;
Glucuronosyltransferase/genetics*
;
Adult
;
Crigler-Najjar Syndrome/complications*
;
Cholecystitis/etiology*
;
Homozygote
;
Mutation
;
Pedigree
7.Clinical hearing phenotypes analysis of GJB2 gene p.V37I homozygote and compound heterozygote mutation in infants.
Yu RUAN ; Cheng WEN ; Xiaohua CHENG ; Wei ZHANG ; Jinge XIE ; Yue LI ; Lin DENG ; Lihui HUANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(12):1104-1108
Objective:To analyze the hearing phenotypes of p. V37I homozygote and compound heterozygote mutation in GJB2 gene, and to provide basis for genetic counseling. Methods:Fifty-three subjects with p. V37I homozygote and compound heterozygote mutation were recruited at Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital from January 2023 to March 2024. All subjects received universal newborn hearing screening(UNHS), 23-site chip neonatal deafness genetic screening and audiological tests, including ABR, acoustic immittance, DPOAE, ASSR. The results of newborn hearing screening and hearing diagnosis were compared between homozygous mutation group of 30 cases and compound heterozygous mutation group of 23 cases. Results:In 53 cases, the overall refer rate of UNHS was 64.15%(34/53), the refer rate of homozygous mutation group was 80.00%(24/30), which was higher than that of compound heterozygous mutation group(43.48%, 10/23), the difference between the two groups was statistically significant(P<0.05). Three subjects with p. V37I compound heterozygous mutation had passed UNHS and diagnosed with unilateral mild hearing loss. The average age of diagnosis of 53 cases was (3.77±1.40) months, 25 cases with hearing loss accounted for 47.17%, including 13 cases with unilateral, 12 cases with bilateral, 28 cases with normal hearing accounted for 52.83%. There was no significant difference between homozygous mutation group(56.67%, 17/30) and compound heterozygous mutation group(34.78%, 8/23) in the proportion of confirmed hearing loss(P>0.05). Among 37 ears of 25 patients with hearing loss, the proportion of mild, moderate and profound hearing loss were 70.27%(26/37), 27.03%(10/37) and 2.70%(1/37), respectively. The hearing loss degree of the homozygous mutation group and the compound heterozygous mutation group were mainly mild, accounting for 70.37%(19/27) and 70.00%(7/10) respectively. There was no significant difference between the two groups in the distribution of hearing loss degree(P>0.05). Conclusion:The probability of hearing loss was 47.17% in infants of GJB2 gene p. V37I homozygote and compound heterozygote mutation, mainly mild hearing loss. There was no difference in the probability of hearing loss and the distribution of hearing loss degree between the two groups. Patients with p. V37I homozygous and compound heterozygous mutation currently diagnosed as normal hearing need continuous clinical follow-up.
Humans
;
Connexin 26
;
Heterozygote
;
Homozygote
;
Female
;
Phenotype
;
Male
;
Mutation
;
Connexins/genetics*
;
Infant
;
Infant, Newborn
;
Hearing Tests
;
Neonatal Screening
;
Deafness/genetics*
;
Genetic Testing
8.Results of carrier screening for Spinal muscular atrophy among 35 145 reproductive-aged individuals from Dongguan region.
Ying ZHAO ; Jiwu LOU ; Youqing FU ; Yunshi DAI ; Qiaoyi LIANG ; Manna SUN ; Junru TAN ; Yanhui LIU
Chinese Journal of Medical Genetics 2023;40(6):655-660
OBJECTIVE:
To carry out carrier screening for Spinal muscular atrophy (SMA) in reproductive-aged individuals from Dongguan region and determine the carrier frequency of SMN1 gene mutations.
METHODS:
Reproductive-aged individuals who underwent SMN1 genetic screening at the Dongguan Maternal and Child Health Care Hospital from March 2020 to August 2022 were selected as the study subjects. Deletions of exon 7 and 8 (E7/E8) of the SMN1 gene were detected by real-time fluorescence quantitative PCR (qPCR), and prenatal diagnosis was provided for carrier couples by multiple ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 35 145 subjects, 635 were found to be carriers of SMN1 E7 deletion (586 with heterozygous E7/E8 deletion, 2 with heterozygous E7 deletion and homozygous E8 deletion, and 47 with sole heterozygous E7 deletion). The carrier frequency was 1.81% (635/35 145), with 1.59% (29/1 821) in males and 1.82% (606/33 324) in females. There was no significant difference between the two genders (χ² = 0.497, P = 0.481). A 29-year-old woman was found to harbor homozygous deletion of SMN1 E7/E8, and was verified to have a SMN1∶SMN2 ratio of [0∶4], none of her three family members with a [0∶4] genotype had clinical symptoms. Eleven carrier couples had accepted prenatal diagnosis, and one fetus was found to have a [0∶4] genotype, and the pregnancy was terminated.
CONCLUSION
This study has determined the SMA carrier frequency in Dongguan region for the first time and provided prenatal diagnosis for carrier couples. The data can provide a reference for genetic counseling and prenatal diagnosis, which has important clinical implications for the prevention and control of birth defects associated with SMA.
Humans
;
Child
;
Pregnancy
;
Male
;
Female
;
Adult
;
Homozygote
;
Sequence Deletion
;
Prenatal Diagnosis
;
Genetic Testing
;
Muscular Atrophy, Spinal/genetics*
;
Survival of Motor Neuron 1 Protein/genetics*
;
Genetic Carrier Screening
10.Holocarboxylase synthetase deficiency induced by HLCS gene mutations: a rare disease study.
Ke-Yao LI ; Jian-Ping TANG ; Yan-Ling JIANG ; Shu-Zhen YUE ; Bin ZHOU ; Rong WEN ; Ze-Tao ZHOU ; Zhu WEI
Chinese Journal of Contemporary Pediatrics 2023;25(4):401-407
A boy, aged 16 months, attended the hospital due to head and facial erythema for 15 months and vulva erythema for 10 months with aggravation for 5 days. The boy developed perioral and periocular erythema in the neonatal period and had erythema and papules with desquamation and erosion in the neck, armpit, and trigone of vulva in infancy. Blood gas analysis showed metabolic acidosis; the analysis of amino acid and acylcarnitine profiles for inherited metabolic diseases and the analysis of organic acid in urine suggested multiple carboxylase deficiency; genetic testing showed a homozygous mutation of c.1522C>T(p.R508W) in the HLCS gene. Finally the boy was diagnosed with holocarboxylase synthetase deficiency and achieved a good clinical outcome after oral biotin treatment. This article analyzes the clinical data of a child with holocarboxylase synthetase deficiency and summarizes the etiology, diagnosis, and treatment of this child, so as to provide ideas for clinicians to diagnose this rare disease.
Humans
;
Male
;
Biotin/therapeutic use*
;
Holocarboxylase Synthetase Deficiency/drug therapy*
;
Homozygote
;
Mutation
;
Rare Diseases/drug therapy*
;
Infant

Result Analysis
Print
Save
E-mail