1.High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors.
Yi ZANG ; Mingbo SU ; Qingxing WANG ; Xi CHENG ; Wenru ZHANG ; Yao ZHAO ; Tong CHEN ; Yingyan JIANG ; Qiang SHEN ; Juan DU ; Qiuxiang TAN ; Peipei WANG ; Lixin GAO ; Zhenming JIN ; Mengmeng ZHANG ; Cong LI ; Ya ZHU ; Bo FENG ; Bixi TANG ; Han XIE ; Ming-Wei WANG ; Mingyue ZHENG ; Xiaoyan PAN ; Haitao YANG ; Yechun XU ; Beili WU ; Leike ZHANG ; Zihe RAO ; Xiuna YANG ; Hualiang JIANG ; Gengfu XIAO ; Qiang ZHAO ; Jia LI
Protein & Cell 2023;14(1):17-27
The global COVID-19 coronavirus pandemic has infected over 109 million people, leading to over 2 million deaths up to date and still lacking of effective drugs for patient treatment. Here, we screened about 1.8 million small molecules against the main protease (Mpro) and papain like protease (PLpro), two major proteases in severe acute respiratory syndrome-coronavirus 2 genome, and identified 1851Mpro inhibitors and 205 PLpro inhibitors with low nmol/l activity of the best hits. Among these inhibitors, eight small molecules showed dual inhibition effects on both Mpro and PLpro, exhibiting potential as better candidates for COVID-19 treatment. The best inhibitors of each protease were tested in antiviral assay, with over 40% of Mpro inhibitors and over 20% of PLpro inhibitors showing high potency in viral inhibition with low cytotoxicity. The X-ray crystal structure of SARS-CoV-2 Mpro in complex with its potent inhibitor 4a was determined at 1.8 Å resolution. Together with docking assays, our results provide a comprehensive resource for future research on anti-SARS-CoV-2 drug development.
Humans
;
Antiviral Agents/chemistry*
;
COVID-19
;
COVID-19 Drug Treatment
;
High-Throughput Screening Assays
;
Molecular Docking Simulation
;
Protease Inhibitors/chemistry*
;
SARS-CoV-2/enzymology*
;
Viral Nonstructural Proteins
2.Advances of development and application amino acid biosensors.
Wei PU ; Jiuzhou CHEN ; Yu WANG ; Ping ZHENG ; Jibin SUN
Chinese Journal of Biotechnology 2023;39(6):2485-2501
Amino acids are the basic building blocks of protein that are very important to the nutrition and health of humans and animals, and widely used in feed, food, medicine and daily chemicals. At present, amino acids are mainly produced from renewable raw materials by microbial fermentation, forming one of the important pillar industries of biomanufacturing in China. Amino acid-producing strains are mostly developed through random mutagenesis- and metabolic engineering-enabled strain breeding combined with strain screening. One of the key limitations to further improvement of production level is the lack of efficient, rapid, and accurate strain screening methods. Therefore, the development of high-throughput screening methods for amino acid strains is very important for the mining of key functional elements and the creation and screening of hyper-producing strains. This paper reviews the design of amino acid biosensors and their applications in the high-throughput evolution and screening of functional elements and hyper-producing strains, and the dynamic regulation of metabolic pathways. The challenges of existing amino acid biosensors and strategies for biosensor optimization are discussed. Finally, the importance of developing biosensors for amino acid derivatives is prospected.
Animals
;
Humans
;
Amino Acids
;
Biosensing Techniques
;
Metabolic Engineering
;
High-Throughput Screening Assays
;
China
3.Advancements in virtual screening techniques for study of enzyme inhibitor compounds.
Bei WANG ; Ying-Ying MENG ; Man-Ping LUO ; Kang-Xu WANG ; Mei-Yuan LI ; De-Min LI ; Xin-Guo ZHANG
China Journal of Chinese Materia Medica 2023;48(24):6533-6544
Enzymes are closely associated with the onset and progression of numerous diseases, making enzymes a primary target in innovative drug development. However, the challenge remains in identifying compounds that exhibit potent inhibitory effects on the target enzymes. With the continuous expansion of the total number of natural products and increasing difficulty in isolating and enriching new compounds, traditional high-throughput screening methods are finding it increasingly challenging to meet the demands of new drug development. Virtual screening, characterized by its high efficiency and low cost, has gradually become an indispensable technology in drug development. It represents a prominent example of the integration of artificial intelligence with biopharmaceuticals and is an inevitable trend in the rapid development of innovative drug screening in the future. Therefore, this article primarily focused on systematically reviewing the recent applications of virtual screening technology in the development of enzyme inhibitors and explored the prospects and advantages of using this technology in developing new drugs, aiming to provide essential theoretical insights and references for the application of related technologies in the field of new drug development.
Artificial Intelligence
;
Enzyme Inhibitors/pharmacology*
;
High-Throughput Screening Assays
;
Molecular Docking Simulation
4.Antimicrobials discovery against Staphylococcus aureus by high throughput screening of drug library.
Peng Fei SHE ; Yi Fan YANG ; Lin Hui LI ; Lin Ying ZHOU ; Yong WU
Chinese Journal of Preventive Medicine 2023;57(11):1855-1861
To develop antimicrobials against Staphylococcus aureus by high throughput screening of drug library. The type of this study is experimental research. The clinical isolates of S. aureus were collected from the sputum samples of respiratory inpatient department of the Third Xiangya Hospital of Central South University. The anti-planktonic cells growth inhibition activity of FDA-approved drugs library (including 1 573 molecules) was assessed by building a planktonic cells screening platform; The biofilm inhibitory effect of the FDA-approved drugs was detected by building a biofilm screening platform combined with crystal violet staining; Minimal inhibitory concentrations of the selected hits were determined by broth microdilution assay. Finally, the cytotoxicity of the selected hits was detected by CCK-8 assay. The results showed that 218 hits were exhibited effective growth inhibitory effects against S. aureus by setting the concentrations of the molecules in the FDA-approved library to 100 μmol/L. These selected molecules are mainly anti-infective drugs, accounting for 118 hits; Followed by anti-cancer drugs, anti-inflammatory/-immune drugs, neurological drugs, cardiovascular drugs, endocrine drugs, and metabolic disease drugs, which accounts for 40, 19, 12, 9, 8, and 3 hits; Other unclassified drugs accounts for 9 hits. The top 10 hits exhibiting anti-planktonic cells activity against S. aureus were mainly including antitumor drugs, followed by neurological drugs and unclassified drugs like vitamin K3 with the inhibition rate of 99.65%-100%. Similarly, the top 10 hits showing biofilm inhibitory effects against S. aureus were also mainly including antitumor drugs, followed by neurological drugs and anti-inflammatory/-immune drugs with the inhibition rate of 50.22%-92.95%. The minimal inhibitory concentration (MIC) of the 51 hits by second round screening was determined by micro-dilution assay, which mainly include the antitumor drugs, cardiovascular drugs, endocrine drugs, anti-inflammatory/-immune drugs, metabolic disease drugs, neurological drugs and other unclassified drugs accounted for 22, 5, 3, 9, 2, 5 and 5 hits, respectively, with the MICs of 1.56-50 μmol/L, 6.25-25 μmol/L, 6.25-25 μmol/L, 0.2-50 μmol/L, 25-50 μmol/L, 1.56-50 μmol/L and 0.1-12.5 μmol/L, respectively. In conclusion, the minimum inhibitory concentrations of small molecules screened through high-throughput assay are at the level of micromolar with strong drug development potential and high modifiability. The high effective anti-planktonic cells and anti-biofilm activity by these molecules are expected to provide new ideas for the development of new antimicrobials against S. aureus.
Humans
;
Staphylococcus aureus
;
Anti-Bacterial Agents/pharmacology*
;
High-Throughput Screening Assays
;
Staphylococcal Infections
;
Anti-Infective Agents/pharmacology*
;
Microbial Sensitivity Tests
;
Biofilms
;
Antineoplastic Agents/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
;
Cardiovascular Agents/pharmacology*
;
Metabolic Diseases
5.Antimicrobials discovery against Staphylococcus aureus by high throughput screening of drug library.
Peng Fei SHE ; Yi Fan YANG ; Lin Hui LI ; Lin Ying ZHOU ; Yong WU
Chinese Journal of Preventive Medicine 2023;57(11):1855-1861
To develop antimicrobials against Staphylococcus aureus by high throughput screening of drug library. The type of this study is experimental research. The clinical isolates of S. aureus were collected from the sputum samples of respiratory inpatient department of the Third Xiangya Hospital of Central South University. The anti-planktonic cells growth inhibition activity of FDA-approved drugs library (including 1 573 molecules) was assessed by building a planktonic cells screening platform; The biofilm inhibitory effect of the FDA-approved drugs was detected by building a biofilm screening platform combined with crystal violet staining; Minimal inhibitory concentrations of the selected hits were determined by broth microdilution assay. Finally, the cytotoxicity of the selected hits was detected by CCK-8 assay. The results showed that 218 hits were exhibited effective growth inhibitory effects against S. aureus by setting the concentrations of the molecules in the FDA-approved library to 100 μmol/L. These selected molecules are mainly anti-infective drugs, accounting for 118 hits; Followed by anti-cancer drugs, anti-inflammatory/-immune drugs, neurological drugs, cardiovascular drugs, endocrine drugs, and metabolic disease drugs, which accounts for 40, 19, 12, 9, 8, and 3 hits; Other unclassified drugs accounts for 9 hits. The top 10 hits exhibiting anti-planktonic cells activity against S. aureus were mainly including antitumor drugs, followed by neurological drugs and unclassified drugs like vitamin K3 with the inhibition rate of 99.65%-100%. Similarly, the top 10 hits showing biofilm inhibitory effects against S. aureus were also mainly including antitumor drugs, followed by neurological drugs and anti-inflammatory/-immune drugs with the inhibition rate of 50.22%-92.95%. The minimal inhibitory concentration (MIC) of the 51 hits by second round screening was determined by micro-dilution assay, which mainly include the antitumor drugs, cardiovascular drugs, endocrine drugs, anti-inflammatory/-immune drugs, metabolic disease drugs, neurological drugs and other unclassified drugs accounted for 22, 5, 3, 9, 2, 5 and 5 hits, respectively, with the MICs of 1.56-50 μmol/L, 6.25-25 μmol/L, 6.25-25 μmol/L, 0.2-50 μmol/L, 25-50 μmol/L, 1.56-50 μmol/L and 0.1-12.5 μmol/L, respectively. In conclusion, the minimum inhibitory concentrations of small molecules screened through high-throughput assay are at the level of micromolar with strong drug development potential and high modifiability. The high effective anti-planktonic cells and anti-biofilm activity by these molecules are expected to provide new ideas for the development of new antimicrobials against S. aureus.
Humans
;
Staphylococcus aureus
;
Anti-Bacterial Agents/pharmacology*
;
High-Throughput Screening Assays
;
Staphylococcal Infections
;
Anti-Infective Agents/pharmacology*
;
Microbial Sensitivity Tests
;
Biofilms
;
Antineoplastic Agents/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
;
Cardiovascular Agents/pharmacology*
;
Metabolic Diseases
6.Construction of a high-throughput screening model for mitochondrial function of Aconiti Lateralis Radix Praeparata by machine learning algorithm and mechanism analysis.
Ying-Li ZHU ; Hong-Bin YANG ; Jia-Rui WU ; Xin SUN ; Bing ZHANG
China Journal of Chinese Materia Medica 2022;47(9):2509-2515
A high-throughput screening machine learning model for mitochondrial function was constructed, and compounds of Aco-niti Lateralis Radix Praeparata were predicted. Deoxyaconitine with the highest score and benzoylmesaconine with the lowest score among the compounds screened by the model were selected for mitochondrial mechanism analysis. Mitochondrial function data were collected from PubChem and Tox21 databases. Random forest and gradient boosted decision tree algorithms were separately used for mo-deling, and ECFP4(extended connectivity fingerprint, up to four bonds) and Mordred descriptors were employed for training, respectively. Cross-validation test was carried out, and balanced accuracy(BA) and overall accuracy were determined to evaluate the performance of different combinations of models and obtain the optimal algorithm and hyperparameters for modeling. The data of Aconiti Lateralis Radix Praeparata compounds in TCMSP database were collected, and after prediction and screening by the constructed high-throughput screening machine learning model, deoxyaconitine and benzoylmesaconine were selected to measure mitochondrial membrane potential, reactive oxygen species(ROS) level and protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax) and peroxisome proliferator-activated receptor-γ-coactivator 1α(PGC-1α). The results showed that the model constructed using gradient boosted decision tree+Mordred algorithm performed better, with a cross-validation BA of 0.825 and a test set accuracy of 0.811. Deoxyaconitine and benzoylmesaconine changed the ROS level(P<0.001), mitochondrial membrane potential(P<0.001), and protein expression of Bcl-2(P<0.001, P<0.01) and Bax(P<0.001), and deoxyaconitine increased the expression of PGC-1α protein(P<0.01). The high-throughput screening model for mitochondrial function constructed by gradient boosted decision tree+Mordred algorithm was more accurate than that by random forest+ECFP4 algorithm, which could be used to build an algorithm model for subsequent research. Deoxyaconitine and benzoylmesaconine affected mitochondrial function. However, deoxyaconitine with higher score also affected mitochondrial biosynthesis by regulating PGC-1α protein.
Aconitum/chemistry*
;
Algorithms
;
Drugs, Chinese Herbal/chemistry*
;
High-Throughput Screening Assays
;
Machine Learning
;
Mitochondria
;
Reactive Oxygen Species
;
bcl-2-Associated X Protein
7.Advances in high-content screening applications in toxicology research.
Ping GUO ; Li Ping CHEN ; Wen CHEN
Chinese Journal of Preventive Medicine 2022;56(1):15-19
The toxicity data of chemicals and drugs increases rapidly, while the animal experimental-based tests method could not meet the current demand of health risk assessment. The high-throughput screening techniques based on in vitro alternative models, integrating with computational methods and information technology to establish toxicity tests strategy promises to address this problem. High-content screening (HCS) technology uses automated microscopy and quantitative image platforms to perform multi-parameter and high-throughput phenotypic analysis via a visualization and quantification manner, and to quickly and effectively assess toxicity and prioritization of chemicals, which promotes the development of in vitro toxicity tests and computational toxicology. HCS technology has been included as an important tool for Toxicity Testing in the 21st Century (Tox21) and chemical risk prioritization. Its applications have been widely utilized in the research field of toxicity tests and chemical toxicity mechanisms. In this review, we describe the development of HCS technology, technical points, toxicological applications, and the future directions and challenges of HCS, so as to provide references for the toxicity testing technology and risk assessment methodology.
Animals
;
High-Throughput Screening Assays
;
Research Design
;
Risk Assessment
;
Toxicity Tests
8.Advances of high-throughput screening system in reengineering of biological entities.
Jianhua YANG ; Xiaolan SU ; Leilei ZHU
Chinese Journal of Biotechnology 2021;37(7):2197-2210
Enzymes and cell factories are the core of industrial biotechnology. They play important roles in various fields such as medicine, chemical industry, food, agriculture, and energy. Usually, natural enzymes and cells need to be engineered to improve the catalytic efficiency, stability and enantioselectivity. Directed evolution makes it possible to rapidly improve the properties of enzymes and cell factories. Sensitive and reliable high-throughput screening approaches are the key for successful and efficient engineering of enzymes and cell factories. In this review, we first summarize the advantages and disadvantages of different screening methods and signal generation strategies as well as their application scope; we then describe the latest advances of ultra-high throughput screening technology applied in the directed evolution of enzymes and cell factories in the past three years. On this basis, we discuss the limiting factors that need to be further improved for high-throughput screening systems and forecast the future development trends of high-throughput screening methods, hoping that researchers in various fields including biotechnology and instrument development can cooperate closely to enhance the reliability and applicability of the high-throughput screening techniques.
Biotechnology
;
Directed Molecular Evolution
;
Enzymes
;
High-Throughput Screening Assays
;
Reproducibility of Results
9.Optimizations of an ELISA-like high-throughput screening assay for the discovery of β-catenin/TCF4 interaction antagonists.
Zhenghao FU ; Gangan YAN ; Xiaohong ZHU ; Xiaoping LIU ; Yunyu CHEN
Chinese Journal of Biotechnology 2021;37(8):2878-2889
In canonical Wnt/β-catenin signaling pathway, β-catenin/TCF4 (T-cell factor 4) interaction plays an important role in the pathogenesis and development of non-small cell lung cancer (NSCLC), and it is tightly associated with the proliferation, chemoresistance, recurrence and metastasis of NSCLC. Therefore, suppressing β-catenin/TCF4 interaction in Wnt/β-catenin signaling pathway would be a new therapeutic avenue against NSCLC metastasis. In this study, considering the principle of enzyme-linked immunosorbent assay (ELISA), an optimized high-throughput screening (HTS) assay was developed for the discovery of β-catenin/TCF4 interaction antagonists. Subsequently, this ELISA-like screening assay was performed using 2 μg/mL GST-TCF4 βBD and 0.5 μg/mL β-catenin, then a high Z' factor of 0.83 was achieved. A pilot screening of a natural product library using this ELISA-like screening assay identified plumbagin as a potential β-catenin/TCF4 interaction antagonist. Plumbagin remarkably inhibited the proliferation of A549, H1299, MCF7 and SW480 cell lines. More importantly, plumbagin significantly suppressed the β-catenin-responsive transcription in TOPFlash assay. In short, this newly developed ELISA-like screening assay will be vital for the rapid screening of novel Wnt inhibitors targeting β-catenin/TCF4 interaction, and this interaction is a potential anticancer target of plumbagin in vitro.
Carcinoma, Non-Small-Cell Lung
;
Cell Line, Tumor
;
Enzyme-Linked Immunosorbent Assay
;
High-Throughput Screening Assays
;
Humans
;
Lung Neoplasms
;
Transcription Factor 4/genetics*
;
beta Catenin/genetics*
10.High-throughput screening of Saccharomyces cerevisiae efficiently producing tyrosine.
Tanghao LIU ; Youran LI ; Liang ZHANG ; Zhongyang DING ; Zhenghua GU ; Guiyang SHI ; Sha XU
Chinese Journal of Biotechnology 2021;37(9):3348-3360
Tyrosine is an important aromatic amino acid. Besides its nutritional value, tyrosine is also an important precursor for the synthesis of coumarins and flavonoids. Previously, our laboratory constructed a Saccharomyces cerevisiae strain LTH0 (ARO4K229L, ARO7G141S, Δaro10, Δzwf1, Δura3) where tyrosine feedback inhibition was released. In the present study, heterologous expression of betaxanthins synthesis genes DOD (from Mirabilis jalapa) and CYP76AD1 (from sugar beet B. vulgaris) in strain LTH0 enabled production of yellow fluorescence. The engineered strain LTH0-DOD-CYP76AD1 was subjected to UV combined with ARTP mutagenesis, followed by flow cytometry screening. Among the mutants screened, the fluorescence intensity of the mutant strain LTH2-5-DOD-CYP76AD1 at the excitation wavelength of 485 nm and emission wavelength of 505 nm was (5 941±435) AU/OD, which was 8.37 times higher than that of strain LTH0-DOD-CYP76AD1. Fourteen mutant strains were subjected to fermentation to evaluate their tyrosine producing ability. The highest extracellular tyrosine titer reached 26.8 mg/L, which was 3.96 times higher than that of strain LTH0-DOD-CYP76AD1. Heterologous expression of the tyrosine ammonia lyase FjTAL derived from Flavobacterium johnsoniae further increased the titer of coumaric acid to 119.8 mg/L, which was 1.02 times higher than that of the original strain LTH0-FjTAL.
Flavobacterium
;
High-Throughput Screening Assays
;
Mirabilis
;
Saccharomyces cerevisiae/genetics*
;
Tyrosine

Result Analysis
Print
Save
E-mail