1.Circulating tumor DNA- and cancer tissue-based next-generation sequencing reveals comparable consistency in targeted gene mutations for advanced or metastatic non-small cell lung cancer.
Weijia HUANG ; Kai XU ; Zhenkun LIU ; Yifeng WANG ; Zijia CHEN ; Yanyun GAO ; Renwang PENG ; Qinghua ZHOU
Chinese Medical Journal 2025;138(7):851-858
BACKGROUND:
Molecular subtyping is an essential complementarity after pathological analyses for targeted therapy. This study aimed to investigate the consistency of next-generation sequencing (NGS) results between circulating tumor DNA (ctDNA)-based and tissue-based in non-small cell lung cancer (NSCLC) and identify the patient characteristics that favor ctDNA testing.
METHODS:
Patients who diagnosed with NSCLC and received both ctDNA- and cancer tissue-based NGS before surgery or systemic treatment in Lung Cancer Center, Sichuan University West China Hospital between December 2017 and August 2022 were enrolled. A 425-cancer panel with a HiSeq 4000 NGS platform was used for NGS. The unweighted Cohen's kappa coefficient was employed to discriminate the high-concordance group from the low-concordance group with a cutoff value of 0.6. Six machine learning models were used to identify patient characteristics that relate to high concordance between ctDNA-based and tissue-based NGS.
RESULTS:
A total of 85 patients were enrolled, of which 22.4% (19/85) had stage III disease and 56.5% (48/85) had stage IV disease. Forty-four patients (51.8%) showed consistent gene mutation types between ctDNA-based and tissue-based NGS, while one patient (1.2%) tested negative in both approaches. Patients with advanced diseases and metastases to other organs would be suitable for the ctDNA-based NGS, and the generalized linear model showed that T stage, M stage, and tumor mutation burden were the critical discriminators to predict the consistency of results between ctDNA-based and tissue-based NGS.
CONCLUSION
ctDNA-based NGS showed comparable detection performance in the targeted gene mutations compared with tissue-based NGS, and it could be considered in advanced or metastatic NSCLC.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Circulating Tumor DNA/blood*
;
High-Throughput Nucleotide Sequencing/methods*
;
Female
;
Male
;
Lung Neoplasms/pathology*
;
Middle Aged
;
Mutation/genetics*
;
Aged
;
Adult
;
Aged, 80 and over
2.Neoantigen-driven personalized tumor therapy: An update from discovery to clinical application.
Na XIE ; Guobo SHEN ; Canhua HUANG ; Huili ZHU
Chinese Medical Journal 2025;138(17):2057-2090
Neoantigens exhibit high immunogenic potential and confer a uniqueness to tumor cells, making them ideal targets for personalized cancer immunotherapy. Neoantigens originate from tumor-specific genetic alterations, abnormal viral infections, or other biological mechanisms, including atypical RNA splicing events and post-translational modifications (PTMs). These neoantigens are recognized as foreign by the immune system, eliciting an immune response that largely bypasses conventional mechanisms of central and peripheral tolerance. Advances in next-generation sequencing (NGS), mass spectrometry (MS), and artificial intelligence (AI) have greatly expedited the rapid detection and forecasting of neoantigens, markedly propelling the development of diverse immunotherapeutic strategies, including cancer vaccines, adoptive cell therapy, and antibody treatment. In this review, we comprehensively explore the discovery and characterization of neoantigens and their clinical use within promising immunotherapeutic frameworks. Additionally, we address the current landscape of neoantigen research, the intrinsic challenges of the field, and potential pathways for clinical application in cancer treatment.
Humans
;
Neoplasms/therapy*
;
Precision Medicine/methods*
;
Immunotherapy/methods*
;
Antigens, Neoplasm/genetics*
;
Cancer Vaccines/immunology*
;
High-Throughput Nucleotide Sequencing
4.Mechanism of Daotan Xixin Decoction in treating APP/PS1 mice based on high-throughput sequencing technology and bioinformatics analysis.
Bo-Lun CHEN ; Jian-Zheng LU ; Xin-Mei ZHOU ; Xiao-Dong WEN ; Yuan-Jing JIANG ; Ning LUO
China Journal of Chinese Materia Medica 2025;50(2):301-313
This study aims to investigate the therapeutic effect and mechanism of Daotan Xixin Decoction on APP/PS1 mice. Twelve APP/PS1 male mice were randomized into four groups: APP/PS1 and low-, medium-, and high-dose Daotan Xixin Decoction. Three C57BL/6 wild-type mice were used as the control group. The learning and memory abilities of mice in each group were examined by the Morris water maze test. The pathological changes of hippocampal nerve cells were observed by hematoxylin-eosin staining and Nissl staining. Immunohistochemistry was employed to detect the expression of β-amyloid(Aβ)_(1-42) in the hippocampal tissue. The high-dose Daotan Xixin Decoction group with significant therapeutic effects and the model group were selected for high-throughput sequencing. The differentially expressed gene(DEG) analysis, Gene Ontology(GO) analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and Gene Set Variation Analysis(GSVA) were performed on the sequencing results. RT-qPCR and Western blot were conducted to determine the mRNA and protein levels, respectively, of some DEGs. Compared with the APP/PS1 group, Daotan Xixin Decoction at different doses significantly improved the learning and memory abilities of APP/PS1 mice, ameliorated the neuropathological damage in the CA1 region of the hippocampus, increased the number of neurons, and decreased the deposition of Aβ_(1-42) in the brain. A total of 1 240 DEGs were screened out, including 634 genes with up-regulated expression and 606 genes with down-regulated expression. The GO analysis predicted the biological processes including RNA splicing and protein folding, the cellular components including spliceosome complexes and nuclear spots, and the molecular functions including unfolded protein binding and heat shock protein binding. The KEGG pathway enrichment analysis revealed the involvement of neurodegenerative disease pathways, amyotrophic lateral sclerosis, and splicing complexes. Further GSVA pathway enrichment analysis showed that the down-regulated pathways involved nuclear factor-κB(NF-κB)-mediated tumor necrosis factor-α(TNF-α) signaling pathway, UV response, and unfolded protein response, while the up-regulated pathways involved the Wnt/β-catenin signaling pathway. The results of RT-qPCR and Western blot showed that compared with the APP/PS1 group, Daotan Xixin Decoction at different doses down-regulated the mRNA and protein levels of signal transducer and activator of transcription 3(STAT3), NF-κB, and interleukin-6(IL-6) in the hippocampus. In conclusion, Daotan Xixin Decoction can improve the learning and memory abilities of APP/PS1 mice by regulating the STAT3/NF-κB/IL-6 signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Alzheimer Disease/metabolism*
;
Computational Biology
;
Mice, Inbred C57BL
;
High-Throughput Nucleotide Sequencing
;
Amyloid beta-Protein Precursor/metabolism*
;
Hippocampus/metabolism*
;
Mice, Transgenic
;
Presenilin-1/metabolism*
;
Humans
;
Memory/drug effects*
;
Maze Learning/drug effects*
;
Amyloid beta-Peptides/genetics*
;
Disease Models, Animal
5.In-depth identification of para-Bombay blood type in cancer patients using third-generation sequencing technology.
Na WANG ; Xiurong YU ; Yujuan CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):148-153
Objective To precisely identify the para-Bombay blood types in cancer patients at our hospital, establish a robust system for the identification of challenging blood types in our laboratory, and provide a foundation for precise transfusion practices. Methods We retrospectively analyzed the blood type results of 91 874 cancer patients from January 1, 2019, to December 31, 2023. Conventional serological methods were used to screen for blood types, and suspected para-Bombay blood types were identified. Further analysis was performed using Pacific Biosciences (PacBio) single-molecule real-time sequencing and Sanger sequencing was used to determine the genotypes of the ABO, FUT1, and FUT2 genes. Results Eight cases of para-Bombay blood type were confirmed through serological and molecular biological methods. The FUT1 genotypes identified were: 5 cases of h1h1 (homozygous mutation 551_552delAG) and 3 cases of h1h2 (compound heterozygous mutations of 551_552delAG and 880_882delTT). The FUT2 genotypes identified were: 2 cases of Se357/Se357, 716 and 4 cases of Se357/Se357. Additionally, one sample revealed a novel heterozygous mutation, 818C>T, in exon 7 of the ABO gene, which was confirmed by PacBio sequencing to be located on the O haplotype. Conclusion PacBio sequencing technology demonstrates significant advantages in analyzing the haplotypes of para-Bombay blood type genes. This approach supports the establishment of a robust system for the identification of challenging blood types and provides novel evidence for precise transfusion practices in cancer patients.
Humans
;
Neoplasms/genetics*
;
Fucosyltransferases/genetics*
;
ABO Blood-Group System/genetics*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
;
Galactoside 2-alpha-L-fucosyltransferase
;
Female
;
Retrospective Studies
;
Genotype
;
Middle Aged
;
Blood Grouping and Crossmatching/methods*
;
Adult
;
Mutation
;
Aged
6.Diagnosis of mucormycosis in three children following hematopoietic stem cell transplantation using metagenomic next-generation sequencing.
Yue LI ; Xiao-Hui ZHOU ; Xiao-Dong WANG ; Chun-Jing WANG ; Ke CAO ; Si-Xi LIU
Chinese Journal of Contemporary Pediatrics 2025;27(2):219-224
This article reports the clinical characteristics and treatment processes of three cases of mucormycosis occurring after hematopoietic stem cell transplantation in children, along with a review of relevant literature. All three patients presented with chest pain as the initial symptom, and metagenomic next-generation sequencing (mNGS) confirmed the mucycete infection early in all cases. Two patients recovered after treatment, while one succumbed to disseminated infection. mNGS has facilitated early diagnosis and treatment, reducing mortality rates. Additionally, surgical intervention is an important strategy for improving the prognosis of this condition.
Humans
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mucormycosis/etiology*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
;
Child
;
Female
;
Metagenomics
;
Child, Preschool
7.Clinical application of next-generation sequencing in early screening of neonatal diseases.
Li-Hong JIANG ; Ben-Qing WU ; Zheng-Yan ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(4):432-437
OBJECTIVES:
To evaluate the clinical value of next-generation sequencing (NGS) in neonatal disease screening, particularly its advantages when combined with tandem mass spectrometry (MS/MS).
METHODS:
A prospective study was conducted involving blood samples from 1 999 neonates born at the Shenzhen Guangming District People's Hospital, between May and August 2021. All samples were initially screened using MS/MS and fluorescence immunoassay, followed by NGS to detect high-frequency variation sites in 135 related pathogenic genes. Suspected positive variants were validated using Sanger sequencing or multiplex ligation-dependent probe amplification in family studies.
RESULTS:
No confirmed positive cases were found in the MS/MS analysis of the 1 999 neonates. Genetic screening identified 58 positive cases (2.90%), 732 carriers of pathogenic genes (36.62%), and 1 209 negative cases (60.48%). One case of neonatal intrahepatic cholestasis was diagnosed (0.05%, 1/1 999). Fluorescence immunoassay identified 39 cases of glucose-6-phosphate dehydrogenase (G6PD) deficiency (1.95%, 39/1 999), while genetic screening identified 43 cases of G6PD deficiency (2.15%, 43/1 999). The fluorescence immunoassay also detected 6 cases of hyperthyrotropinemia (0.30%, 6/1 999), all of whom carried DUOX2 gene variants. The top ten pathogenic gene carrier rates were G6PD (12.8%), DUOX2 (8.7%), HBB (8.2%), ATP7B (6.6%), GJB2 (5.7%), SLC26A4 (5.6%), PAH (5.6%), ACADSB (4.6%), SLC25A13 (4.2%), and SLC22A5 (4.1%).
CONCLUSIONS
NGS can serve as an effective complement to MS/MS, significantly improving the detection rate of inherited metabolic disorders in neonates. When combined with family validation, it enables precise diagnosis, particularly demonstrating complementary advantages in screening for monogenic diseases such as G6PD deficiency.
Humans
;
Infant, Newborn
;
High-Throughput Nucleotide Sequencing/methods*
;
Neonatal Screening/methods*
;
Tandem Mass Spectrometry
;
Prospective Studies
;
Female
;
Male
;
Infant, Newborn, Diseases/diagnosis*
;
Genetic Testing
8.Value of targeted next-generation sequencing in pathogen detection for neonates with respiratory distress syndrome: a prospective randomized controlled trial.
Hai-Hong ZHANG ; Xia OU-YANG ; Xian-Ping LIU ; Shao-Ru HUANG ; Yun-Feng LIN
Chinese Journal of Contemporary Pediatrics 2025;27(10):1191-1198
OBJECTIVES:
To investigate the application value of targeted next-generation sequencing (tNGS) in the etiological diagnosis of moderate to severe respiratory distress syndrome (RDS) in neonates.
METHODS:
A prospective randomized controlled trial was conducted, enrolling 81 term and late-preterm neonates with moderate to severe RDS admitted to Fujian Children's Hospital between December 2023 and December 2024. Patients were randomly assigned to the conventional microbiological test (CMT) group (n=42) or the tNGS group (n=39). For routine pathogen detection, bronchoalveolar lavage fluid was obtained via bronchoscopy, and lower respiratory tract specimens were collected via the endotracheal tube; all specimens underwent culture, and some specimens additionally underwent polymerase chain reaction or antigen testing. In the tNGS group, tNGS was performed in addition to routine pathogen detection on the same specimen types. The detection rate of pathogens, the detection rate of co-infections, and the duration of antibiotic use were compared between the two groups.
RESULTS:
The pathogen detection rate in the tNGS group (18/39, 46%) was significantly higher than that in the CMT group (8/42, 19%) (P=0.009). The co-infection detection rate was 13% (5/39) in the tNGS group, while no co-infections were identified in the CMT group (P=0.024). Regarding treatment, the duration of antibiotic use in the tNGS group was shorter than that in the CMT group [(12±4) days vs (15±5) days, P=0.003].
CONCLUSIONS
tNGS significantly improves the pathogen detection rate in neonates with moderate to severe RDS and offers advantages in the rapid identification of co-infections and reduction of antibiotic treatment duration, suggesting it has clinical utility and potential for wider adoption.
Humans
;
Prospective Studies
;
Infant, Newborn
;
Female
;
Respiratory Distress Syndrome, Newborn/etiology*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
9.Sequence Analysis and Confirmation of an HLA Null Allele Generated by a Base Insertion.
Zhan-Rou QUAN ; Yan-Ping ZHONG ; Liu-Mei HE ; Bing-Na YANG ; Hong-Yan ZOU
Journal of Experimental Hematology 2025;33(1):276-279
OBJECTIVE:
To confirm the sequence of a null allele HLA-C*08:127N produced by a base insertion.
METHODS:
PCR sequence-specific oligonucleotide probe (SSOP) and PCR sequence-based typing (SBT) were used for HLA routine detection, which discovered abnormal sequence maps of HLA-C in one acute myeloid leukemia patient. The sequence of the above loci was confirmed by next generation sequencing (NGS) technology.
RESULTS:
The SSOP typing result showed that HLA-C locus was C*03:04, C*08:01, while the sequence was suspected to be inserted or deleted in exon 3 by SBT, and finally confirmed by NGS as C*03:04, C*08:127N.
CONCLUSION
When base insertion produces HLA null alleles, SBT analysis software cannot provide correct results, but NGS technology can more intuitively obtain accurate HLA typing results.
Humans
;
Alleles
;
High-Throughput Nucleotide Sequencing
;
HLA-C Antigens/genetics*
;
Histocompatibility Testing
;
Polymerase Chain Reaction
;
Leukemia, Myeloid, Acute/genetics*
;
Sequence Analysis, DNA
;
Mutagenesis, Insertional
;
Exons
10.Observational Study on the Diagnostic Efficacy of Metagenomic Next-Generation Sequencing for Bloodstream Infections Secondary to Hematologic Diseases in Children.
Jun-Sheng ZHENG ; Zhong-Lü YE ; Li-Li LIU
Journal of Experimental Hematology 2025;33(1):280-285
OBJECTIVE:
To explore the clinical application value of metagenomic next-generation sequencing (mNGS) in pathogen detection of bloodstream infection secondary to hematologic diseases in children.
METHODS:
42 children with bloodstream infections secondary to hematologic diseases admitted to the Children's Hematology and Tumor Center of the Affiliated Hospital of Guangdong Medical University from November 2021 to May 2023 were included in the study, and their clinical data, results of peripheral blood mNGS and traditional blood culture, pathogen distribution characteristics, and diagnostic efficacy of mNGS were retrospectively analyzed.
RESULTS:
Among the 42 children included, there were 2 cases (4.8%) of aplastic anemia (AA), 27 cases (64.3%) of acute lymphoblastic leukemia (ALL), 7 cases (16.7%) of acute myeloid leukemia (AML), 1 case (2.4%) of chronic myeloid leukemia (CML), 2 cases (4.8%) of hemophagocytic lymphohistiocytosis (HLH), 2 cases (4.8%) of non-Hodgkin lymphoma (NHL), and 1 case (2.4%) of Wiskott-Aldrich syndrome (WAS). In mNGS testing, pathogens were detected in 31 peripheral blood samples, with a positive rate of 73.8% (31/42), significantly higher than the pathogen positive rate of 16.7% (7/42) detected by traditional blood culture, and the difference was statistically significant (P < 0.05). Among the pathogen-positive cases detected by mNGS, 23 cases (74.2%) were positive for bacteria, 12 cases (38.7%) were positive for viruses, and 9 cases (29.0%) were positive for fungi. 32.2% (10/31) of the pathogen-positive samples detected by mNGS were mixed pathogens, which could not be effectively detected by traditional blood culture.
CONCLUSION
Peripheral blood mNGS has advantages in the detection of pathogens of bloodstream infection secondary to hematologic diseases, with a higher detection rate of pathogen positivity than traditional blood cultures. It can detect viruses, rare pathogens and mixed pathogens, and has good clinical application value.
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Hematologic Diseases/immunology*
;
High-Throughput Nucleotide Sequencing
;
Metagenomics
;
Retrospective Studies
;
Sepsis/microbiology*

Result Analysis
Print
Save
E-mail