1.Effect of penetrating resin on the surface structure, microhardness and color of enamel after bleaching.
Chinese Journal of Stomatology 2022;57(5):509-515
Objective: To investigate the effect of permeable resin on the surface structure, microhardness and color of tooth enamel after bleaching. Methods: Premolars extracted for orthodontic needs were selected (provided by the Department of Oral and Maxillofacial surgery of the first affiliated Hospital of Zhengzhou University) and randomly divided into A, B and C 3 groups. Each group was randomly divided into control subgroup, resin subgroup, bleaching subgroup and combined subgroup. Samples in the control subgroup did not receive any treatment. Those in the bleaching subgroup and combined subgroup were treated with cold light whitening. Those in the resin group and combined group were treated with permeable resin. Samples in the group A were observed by scanning electron microscope immediately after treatment and 2 weeks after treatment, and the microhardness of samples in the group B was measured before treatment, immediately after treatment and 2 weeks after treatment (the sample size of each time point was 8 in each subgroup). In group C, chromaticity was measured and chromatic aberration (ΔE value) was calculated before treatment, immediately after treatment and 1 and 2 weeks after treatment (10 samples in each subgroup). Results: Scanning electron microscope showed that the enamel surface of the resin subgroup and the combined group was smooth immediately after treatment, which was basically the same as that of the control subgroup, but covered with resin, and microporous defects and mineral deposits could be seen on the surface of the bleaching subgroup. Two weeks after treatment, the enamel surface of each subgroup was smooth, there was no obvious difference. Immediately after treatment, the microhardness of the control subgroup, resin subgroup, bleaching subgroup and combined subgroup were (354±33), (364±21), (411±30) and (350±17) HV, respectively (F=9.39,P<0.05). The microhardness of the bleaching subgroup was significantly higher than that of the other subgroups (P<0.05). There was no significant difference in microhardness among the four subgroups before treatment and 2 weeks after treatment (F=0.34, 2.75, P>0.05). Immediately after treatment, the ΔE values of the control subgroup, resin subgroup, bleaching subgroup and combined subgroup were 0.00±0.00, 2.29±1.86, 7.20±1.94 and 8.00±0.88, respectively (F=74.21,P<0.05); except that there was no significant difference between bleaching subgroup and combined subgroup (P>0.05), there were significant differences among the other subgroups (P<0.05). There was no significant difference in ΔE value among control subgroup, resin subgroup and bleaching subgroup at each time point (F=1.66, 0.30, 0.96, P>0.05). The difference in the combined subgroup immediately after treatment was significantly higher than that at 1 and 2 weeks after treatment (t=4.73, 4.23,P<0.05), but there was no significant difference between 1 and 2 weeks after treatment (t=0.75, P>0.05), and the color tended to be stable. Conclusions: When whitening healthy enamel, simple cold light whitening or cold light whitening combined with permeation resin can achieve whitening effect.
Color
;
Dental Enamel
;
Hardness
;
Humans
;
Hydrogen Peroxide/pharmacology*
;
Tooth Bleaching/adverse effects*
;
Tooth Bleaching Agents/pharmacology*
2.Standardization of measurement of cervical elastography, its reproducibility, and analysis of baseline clinical factors affecting elastographic parameters
Hyun Joo SEOL ; Ji Hee SUNG ; Won Joon SEONG ; Hyun Mi KIM ; Hyun Soo PARK ; Hayan KWON ; Han Sung HWANG ; Yun Ji JUNG ; Ja Young KWON ; Soo young OH
Obstetrics & Gynecology Science 2020;63(1):42-54
hardness ratio. For baseline clinical factors, we examined the maternal body mass index, blood pressure, heart rate, uterine artery Doppler indices, and fetal presentation.RESULTS: We established a specific protocol for the measurement of cervical elastography using the E cervix program. For all elastographic parameters, the intra-observer intraclass correlation coefficient (ICC) ranged from 0.633 to 0.723 for single measures and from 0.838 to 0.887 for average measures, and the inter-observer ICC ranged from 0.814 to 0.977 for single measures and from 0.901 to 0.988 for average measures. Regression analysis showed that the measurement of the elastographic parameter was not affected by baseline clinical factors.CONCLUSION: We present a standardized protocol for the measurement of cervical elastography using intrinsic compression. According to this protocol, reproducibility was acceptable and the measurement of elastographic parameters was not affected by the baseline clinical factors studied.]]>
Blood Pressure
;
Body Mass Index
;
Cervix Uteri
;
Elasticity
;
Elasticity Imaging Techniques
;
Female
;
Hardness
;
Heart Rate
;
Humans
;
Jupiter
;
Labor Presentation
;
Pregnancy
;
Pregnant Women
;
Premature Birth
;
Reproducibility of Results
;
Uterine Artery
3.Effect of dental bleaching on the microhardness and surface roughness of sealed composite resins
Renan Aparecido FERNANDES ; Henrico Badaoui STRAZZI-SAHYON ; Thaís Yumi Umeda SUZUKI ; André Luiz Fraga BRISO ; Paulo Henrique DOS SANTOS
Restorative Dentistry & Endodontics 2020;45(1):12-
OBJECTIVES: The aim of this in vitro study was to evaluate the microhardness and surface roughness of composite resins before and after tooth bleaching procedures.MATERIALS AND METHODS: Sixty specimens were prepared of each composite resin (Filtek Supreme XT and Opallis), and BisCover LV surface sealant was applied to half of the specimens. Thirty enamel samples were obtained from the buccal and lingual surfaces of human molars for use as the control group. The surface roughness and microhardness were measured before and after bleaching procedures with 35% hydrogen peroxide or 16% carbamide (n = 10). Data were analyzed using 1-way analysis of variance and the Fisher test (α = 0.05).RESULTS: Neither hydrogen peroxide nor carbamide peroxide treatment significantly altered the hardness of the composite resins, regardless of surface sealant application; however, both treatments significantly decreased the hardness of the tooth samples (p < 0.05). The bleaching did not cause any change in surface roughness, with the exception of the unsealed Opallis composite resin and dental enamel, both of which displayed an increase in surface roughness after bleaching with carbamide peroxide (p < 0.05).CONCLUSIONS: The microhardness and surface roughness of enamel and Opallis composite resin were influenced by bleaching procedures.
Composite Resins
;
Dental Enamel
;
Hardness
;
Humans
;
Hydrogen Peroxide
;
In Vitro Techniques
;
Molar
;
Tooth
;
Tooth Bleaching
;
Urea
4.Comparison of color stability, mechanical and chemical properties according to temporary crown resin type
Song Yi YANG ; Ji Yeon KWON ; Ji Su NO ; So Yeon PARK ; Ha Eun PARK ; Eun Ji BAEK ; Su Yeon IM ; Jae Sung KWON
Korean Journal of Dental Materials 2019;46(1):11-20
Objective of this study was to compare the color stability, mechanical and chemical properties of three different types of temporary crown resins. Commercially available powder-liquid (Group PL), light-cured (Group LC) and auto-mix syringe (Group AM) types' temporary crown resins were used as experimental groups for each of the evaluation. All the test groups were evaluated after 1 day and 7 days of immersion in various staining solutions. The colors of all groups before and after storage in the staining solutions were measured by a spectrophotometer based on CIE Lab system, and the color differences (ΔE(*)) thereby calculated. Micro hardness test was performed before water storage and aging after 7 days at 37 ℃. In addition, flexural strength, water sorption and solubility tests were performed according to international standard, ISO 10477. All experimental groups showed significant color change in staining solutions when compared to those stored in the control solution (distilled water) (p<0.05). Group PL showed the least color change among the three groups followed by Group AM (p<0.05). This tendency was observed after 7 days of immersion. In terms of the micro hardness test, Group PL showed the highest value among the three groups followed by Group AM (p<0.05). Additionally, the flexural strength decreased in the following order: AM > PL > LC (p<0.05). Water sorption and solubility increased in the following order: AM < PL < LC (p<0.05). The results of this study would provide useful information when choosing temporary crown resin types in various clinical situations.
Aging
;
Crowns
;
Hardness Tests
;
Immersion
;
Solubility
;
Syringes
;
Water
5.Finishing and polishing effects of multiblade burs on the surface texture of 5 resin composites: microhardness and roughness testing
Elodie EHRMANN ; Etienne MEDIONI ; Nathalie BRULAT-BOUCHARD
Restorative Dentistry & Endodontics 2019;44(1):e1-
OBJECTIVES: The aim of this in vitro study was to test the effect of 2 finishing–polishing sequences (QB, combining a 12/15-fluted finishing bur and an EVO-Light polisher; QWB, adding a 30-fluted polishing bur after the 12/15-fluted finishing bur used in the QB sequence) on 5 nanotech-based resin composites (Filtek Z500, Ceram X Mono, Ceram X Duo, Tetric Evoceram, and Tetric Evoceram Bulk Fill) by comparing their final surface roughness and hardness values to those of a Mylar strip control group (MS). MATERIALS AND METHODS: Twelve specimens of each nanocomposite were prepared in Teflon moulds. The surface of each resin composite was finished with QB (5 samples), QWB (5 samples), or MS (2 samples), and then evaluated (60 samples). Roughness was analysed with an optical profilometer, microhardness was tested with a Vickers indenter, and the surfaces were examined by optical and scanning electron microscopy. Data were analysed using the Kruskal-Wallis test (p < 0.05) followed by the Dunn test. RESULTS: For the hardness and roughness of nanocomposite resin, the QWB sequence was significantly more effective than QB (p < 0.05). The Filtek Z500 showed significantly harder surfaces regardless of the finishing–polishing sequence (p < 0.05). CONCLUSIONS: QWB yielded the best values of surface roughness and hardness. The hardness and roughness of the 5 nanocomposites presented less significant differences when QWB was used.
Composite Resins
;
Dental Polishing
;
Hardness
;
In Vitro Techniques
;
Microscopy, Electron, Scanning
;
Nanocomposites
;
Polytetrafluoroethylene
6.Physical properties and color stability of injection-molded thermoplastic denture base resins
So Yeon SONG ; Kyoung Soo KIM ; Jeong Yol LEE ; Sang Wan SHIN
The Journal of Advanced Prosthodontics 2019;11(1):32-40
PURPOSE: The purpose of this study was to compare mechanical and physical properties of injection-molded thermoplastic denture base resins. MATERIALS AND METHODS: In this study, six commercially available products (VA; Valplast, LC; Lucitone, ST; Smiltone, ES; Estheshot-Bright, AC; Acrytone, WE; Weldenz) were selected from four types of thermoplastic denture base materials (Polyamide, Polyester, Acrylic resin and Polypropylene). The flexural properties and shore D hardness have been investigated and water sorption and solubility, and color stability have evaluated. RESULTS: For the flexural modulus value, ES showed the highest value and WE showed significantly lower value than all other groups (P < .05). Most of experimental groups showed weak color stability beyond the clinically acceptable range. CONCLUSION: Within the limits of this study, thermoplastic denture base resin did not show sufficient modulus to function as a denture base. In addition, all resins showed discoloration with clinical significance, and especially polyamides showed the lowest color stability.
Denture Bases
;
Dentures
;
Hardness
;
Nylons
;
Polyesters
;
Solubility
;
Water
7.Effect of Commercial Effervescent Vitamin Tablets on Bovine Enamel
Moon Jin JEONG ; Myoung Hwa LEE ; Soon Jeong JEONG ; So Jeong KIM ; Myeong Ji KO ; Hye Won SIM ; Ju Young LEE ; Ae Jung IM ; Do Seon LIM
Journal of Dental Hygiene Science 2019;19(4):261-270
BACKGROUND: In this study, four types of effervescent vitamins marketed in Korea were analyzed for their acidity and vitamin content. For this purpose, bovine teeth were immersed in vitamin, and surface microhardness and appearance were measured before and after immersion to evaluate tooth demineralization and erosion.METHODS: Bovine permanent incisors with sound surface enamel were cut to 5×5 mm size, embedded in acrylic resin, and polished using a polishing machine with Sic-paper. The prepared samples were analyzed for pH, vitamin content, and surface hardness before and after immersion using a surface microhardness meter. Demineralization of surface dental enamel was observed using a scanning electron microscope.RESULTS: The average pH of the four effervescent vitamins was less than 5.5; the pH of the positive control Oronamin C was the lowest at 2.76, while that of the negative control Samdasoo was the highest at 6.86. The vitamin content was highest in Berocca and lowest in the DM company Multivitamin. On surface microhardness analysis, surface hardness values of all enamel samples were found to be decreased significantly after 1 and 10 minutes of immersion (p<0.05). After 10 minutes of immersion, there was a significant difference in the decrease in hardness between the experimental groups (p<0.05). Scanning electron microscopy observation showed that dental enamel demineralization after 10 minutes of immersion was the most severe in Oronamin C except for Samdasoo, followed by DM company Multivitamin and VitaHEIM. Immersion in BeroNew and Berocca resulted in similar effects.CONCLUSION: There is a risk of tooth erosion due to decreased tooth surface microhardness when using the four types of effervescent vitamins and vitamin carbonated beverages with pH below 5.5. Therefore, high pH vitamin supplements are recommended to prevent tooth erosion.
Carbonated Beverages
;
Dental Enamel
;
Hardness
;
Hydrogen-Ion Concentration
;
Immersion
;
Incisor
;
Korea
;
Microscopy, Electron, Scanning
;
Tablets
;
Tooth
;
Tooth Demineralization
;
Tooth Erosion
;
Vitamins
8.Effects of commercial plum beverage on the dentin surface of bovine teeth
So Ra HWANG ; Ji Eun KIM ; Ki Ho CHUNG ; Choong Ho CHOI
Journal of Korean Academy of Oral Health 2019;43(4):178-183
OBJECTIVES: We investigated the effects of commercial plum beverage on the dentin surface that could be exposed to caries, gliopathy, and abrasion to investigate the inhibitory effects of dentin corrosion.METHODS: The experimental beverages were Jeju Samdasoo (Group 1, negative control), Coca-Cola (Group 2, positive control), Chorok Maesil (Group 3), and Chorok Maesil with 3% calcium lactate added (Group 4). The specimens were prepared and divided into 4 groups of 12 each. The pH of the experimental beverages was measured using a pH meter, and specimen surface hardness was assessed according to the Vickers hardness number (VHN). The specimens were immersed in the experimental beverage for 1, 3, 5, 10, and 15 minutes. Then, we obtained the average VHN by measuring surface microhardness. Measures of surface microhardness were compared using the paired t-test before and after 15 minutes of immersion in each of the four beverages. Between-group differences in surface microhardness were compared using one-way analysis of variance and the Tukey test after the analysis.RESULTS: After 15 minutes of immersion in the experimental beverages, there was no significant difference in surface microhardness in group 1 (P>0.05). There were significant differences in groups 2, 3, and 4 (P < 0.05). The difference in surface microhardness before and after immersion for 15 minutes was highest in group 3 (−18.1±2.55), followed by group 2 (−13.0±3.53) and group 4 (−7.79±4.47). In group 1, the difference was −1.52±4.30. Moreover, there was a significant difference in each group (P < 0.05). After 10 minutes of immersion, surface microhardness tended to rapidly decrease.CONCLUSIONS: Patients who regularly ingest a commercially available plum drink with low pH should be provided dietary guidance on the risk of dental erosion. Calcium additives should be considered when producing plum beverage products.
Beverages
;
Calcium
;
Corrosion
;
Dentin
;
Hardness
;
Humans
;
Hydrogen-Ion Concentration
;
Immersion
;
Lactic Acid
;
Prunus domestica
;
Tooth
9.Effect of Nano-filled Protective Coating on Microhardness and Wear Resistance of Glass-ionomer Cements
Wonjeong RYU ; Howon PARK ; Juhyun LEE ; Hyunwoo SEO
Journal of Korean Academy of Pediatric Dentistry 2019;46(2):226-232
The purpose of this study was to investigate the effect of adding a protective coating on the microhardness and wear resistance of glass ionomer cements (GICs).Specimens were prepared from GIC and resin-modified GIC (RMGI), and divided into 3 groups based on surface protection: (1) no coating (NC), (2) Equia coat coating (EC), and (3) un-filled adhesive coating (AD). All specimens were then placed in distilled water for 24 h. Surface hardness (n = 10) was evaluated on a Vickers hardness testing machine. Wear resistance (n = 10) was evaluated after subjecting the specimen to thermocycling for 10,000 cycles using a chewing simulator. Data were analyzed using a one-way ANOVA and the Kruskal-Wallis test.Surface hardness was highest in the NC groups, followed by the EC and AD groups. The wear depth of GI + NC was significantly higher than that of all RMGI groups. EC did not significantly lower the wear depth compared to AD.Based on these results, it was concluded that although EC does not increase the surface microhardness of GIC, it can increase the wear resistance.
Adhesives
;
Glass Ionomer Cements
;
Hardness
;
Hardness Tests
;
Mastication
;
Water
10.Evaluation of the Changes in Polymerization of TheraCal LC with Various Light-curing Time and Distance
Sangyong BAE ; Jewoo LEE ; Jiyoung RA
Journal of Korean Academy of Pediatric Dentistry 2019;46(4):392-399
The purpose of this study was to evaluate polymerization of TheraCal LC, one of the tricalcium silicate cements. To measure the Vickers hardness number (VHN), the specimens were cured at different light curing time and distance.As a result, the VHN of the upper surface was significantly higher than the lower surface's in all groups (p < 0.05). The VHN of the lower surface was increased significantly with the increase of the light curing time in all distance (p < 0.05). When the distance was more than 4.0 mm at all light curing time, the VHN of lower surface was significantly decreased (p < 0.05). When the specimen was light cured for 20 seconds, the VHN of the lower surface did not exceed 2, which corresponds to 10% of the upper surface's.These results suggested that the 20 second light curing time was not sufficient to polymerize the lower surface under specific conditions and that light-curing time should be increased.
Hardness
;
Polymerization
;
Polymers
;
Silicates

Result Analysis
Print
Save
E-mail