1.Technological advances of serial analysis of gene expression.
Chinese Journal of Biotechnology 2002;18(3):377-380
Serial analysis of gene expression (SAGE) is an effective method of determining gene expression profiles of tissues and organs under different conditions. In this paper, the detail protocol of SAGE was introduced and some modified procedure of SAGE was reviewed.
Gene Expression Profiling
;
methods
2.Impact of Time Delay in Processing Blood Sample on Next Generation Sequencing for Transcriptome Analysis.
Jae Eun LEE ; So Young JUNG ; So Youn SHIN ; Young Youl KIM
Osong Public Health and Research Perspectives 2018;9(3):130-132
No abstract available.
Gene Expression Profiling*
;
RNA
;
Transcriptome*
4.Bioinformatics Analysis of Core Genes and Key Pathways in Myelodysplastic Syndrome.
Yan WANG ; Ying-Shao WANG ; Nai-Bo HU ; Guang-Shuai TENG ; Yuan ZHOU ; Jie BAI
Journal of Experimental Hematology 2022;30(3):804-812
OBJECTIVE:
To screen differentially expressed gene (DEG) related to myelodysplastic syndrome (MDS) based on Gene Expression Omnibus (GEO) database, and explore the core genes and pathogenesis of MDS by analyzing the biological functions and related signaling pathways of DEG.
METHODS:
The expression profiles of GSE4619, GSE19429, GSE58831 including MDS patients and normal controls were downloaded from GEO database. The gene expression analysis tool (GEO2R) of GEO database was used to screen DEG according to | log FC (fold change) |≥1 and P<0.01. David online database was used to annotate gene ontology function (GO). Metascape online database was used to enrich and analyze differential genes in Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein-protein interaction network (PPI) was constructed by using STRING database. CytoHubba and Mcode plug-ins of Cytoscape were used to analyze the key gene clusters and hub genes. R language was used to diagnose hub genes and draw the ROC curve. GSEA enrichment analysis was performed on GSE19429 according to the expression of LEF1.
RESULTS:
A total of 74 co-DEG were identified, including 14 up-regulated genes and 60 down regulated genes. GO enrichment analysis indicated that BP of down regulated genes was mainly enriched in the transcription and regulation of RNA polymerase II promoter, negative regulation of cell proliferation, and immune response. CC of down regulated genes was mainly enriched in the nucleus, transcription factor complexes, and adhesion spots. MF was mainly enriched in protein binding, DNA binding, and β-catenin binding. KEGG pathway was enriched in primary immunodeficiency, Hippo signaling pathway, cAMP signaling pathway, transcriptional mis-regulation in cancer and hematopoietic cell lineage. BP of up-regulated genes was mainly enriched in type I interferon signaling pathway and viral response. CC was mainly enriched in cytoplasm. MF was mainly enriched in RNA binding. Ten hub genes and three important gene clusters were screened by STRING database and Cytoscape software. The functions of the three key gene clusters were closely related to immune regulation. ROC analysis showed that the hub genes had a good diagnostic significance for MDS. GSEA analysis indicated that LEF1 may affect the normal function of hematopoietic stem cells by regulating inflammatory reaction, which further revealed the pathogenesis of MDS.
CONCLUSION
Bioinformatics can effectively screen the core genes and key signaling pathways of MDS, which provides a new strategy for the diagnosis and treatment of MDS.
Computational Biology
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Gene Ontology
;
Humans
;
Myelodysplastic Syndromes/genetics*
5.Transcriptome analysis of Platycodon grandiflorum at different growth years and discovery of key genes for platycodin biosynthesis.
Jian ZHANG ; Yuan PAN ; Yu WANG ; Da-Xia CHEN
China Journal of Chinese Materia Medica 2021;46(6):1386-1392
Platycodon grandiflorum is a medicinal and edible medicinal material. Our study is aimed to explore the differences in the gene expression of P. grandiflorum in different growth years, and the expression rules of key genes in the biosynthesis of the main active substances of P. grandiflorum. Illumina Hiseq 4000 sequencing platform was used to sequence the transcriptome of P. grandiflorum in different years. Then, 59 654 unigenes were obtained through filtering, assembly, splicing and bioinformatics analysis of the sequencing data, of which 1 671 unigenes were differentially expressed between at least two samples. The results of cluster analysis showed that there was a great difference in the gene expression of P. grandiflorum from one-year-old to two/three-year-old. There were 1 128 different genes between one-and three-year old P. grandiflorum, and only 57 different genes between two-and three-year-old P. grandiflorum. KEGG enrichment results showed that the differential genes of P. grandiflorum in different years were mainly concentra-ted in the biosynthesis of sesquiterpenes and triterpenes, and the biosynthesis of terpenoid skeletons. In the triterpenoid biosynthesis-related pathways, a total of 15 unigenes were identified, involving 5 enzymes. The expression levels of ACAT, HMGR, FDFT1, SQLE decreased with the increase of the growth year of P. grandiflorum. The expression of HMGS was the highest in the one-year-old P. grandiflorum, followed by the three-year-old sample. This study provides useful data for the development of P. grandiflorum, and also provides a basis for the study of related genes in the biosynthetic pathway of platycodin.
Gene Expression Profiling
;
Plant Roots
;
Platycodon/genetics*
;
Saponins
;
Transcriptome
;
Triterpenes
6.Resistance of different ecotypes of Gastrodia elata to tuber rot.
Jin-Qiang ZHANG ; Qing-Song YUAN ; Zhen OUYANG ; Cheng-Hong XIAO ; Yuan WEI ; Yan-Hong WANG ; Jiao XU ; Xin TANG ; Sheng WANG ; Xiao WANG ; Tao ZHOU
China Journal of Chinese Materia Medica 2022;47(9):2281-2287
Tuber rot has become a serious problem in the large-scale cultivation of Gastrodia elata. In this study, we compared the resistance of different ecotypes of G. elata to tuber rot by field experiments on the basis of the investigation of G. elata diseases. The histological observation and transcriptome analysis were conducted to reveal the resistance differences and the underlying mechanisms among different ecotypes. In the field, G. elata f. glauca had the highest incidence of tuber rot, followed by G. elata f. viridis, and G. elata f. elata and G. elata f. glauca×G. elata f. elata showed the lowest incidence. Tuber rot showcased obvious plant source specificity and mainly occurred in the buds and bottom of G. elata plants. After infection, the pathogen spread hyphae in host cortex cells, which can change the endophytic fungal community structure in the cortex and parenchyma of G. elata. G. elata f. glauca had thinner lytic layer and more sugar lumps in the parenchyma than G. elata f. elata. The transcription of genes involved in immune defense, enzyme synthesis, polysaccharide synthesis, carbohydrate transport and metabolism, hydroxylase activity, and aromatic compound synthesis had significant differences between G. elata f. glauca and G. elata f. elata. These findings suggested that the differences in resis-tance to tuber rot among different ecotypes of G. elata may be related to the varied gene expression patterns and secondary metabolites. This study provides basic data for the prevention and control of tuber rot and the improvement of planting technology for G. elata.
Ecotype
;
Gastrodia/microbiology*
;
Gene Expression Profiling
;
Plant Tubers/genetics*
8.Comparative transcriptomic analysis of the haustoria of Gymnosporangium yamadae and G. asiaticum.
Han WENG ; Xia LIU ; Siqi TAO ; Yingmei LIANG
Chinese Journal of Biotechnology 2022;38(10):3825-3843
To provide a theoretical basis for controlling the spread of rust disease, cultivating disease-resistant varieties and reducing yield losses, we investigated the transcriptome differences between Gymnosporangium yamadae and Gymnosporangium asiaticum at the haustorial stage and revealed a specialized selection mechanism for Gymnosporangium species to infect host plants. We sequenced the transcriptomes of the haustoria in rust-infected leaves when basidiospores of G. yamadae and G. asiaticum infected their hosts, and obtained 21 213 and 13 015 unigenes, respectively. Real-time fluorescence quantitative PCR validation of five genes selected from G. yamadae and G. asiaticum, respectively, showed that their expression profiles were generally consistent with the results of transcriptome analysis, demonstrating the reliability of the transcriptome data. We used seven databases such as Nr, GO, KEGG, and KOG to perform gene function annotation and enrichment analysis, and found that the genes from both rusts were mainly enriched in cellular processes, translation, and metabolism-related pathways. Moreover, we used SignalP, TMHMM online website and other software such as dbCAN, BLSAT, HMMER to show that there were 343 (2.51%) and 175 (2.79%) candidate effector proteins containing 14 and 5 proteases and 10 and 3 lipases in the haustoria of G. yamadae and G. asiaticum, respectively. Furthermore, we used OrthoFinder, BLAST and KaKs Calculator software to analyze the evolutionary relationship of the two fungi. Among one-to-one homologous genes, gene pairs with > 82% alignment were considered to be under conservative selection, and 12.37% under positive selection. Five effectors of G. asiaticum were under positive selection, and one of which was a lipase. No significant differences were found in the enrichment of expressed genes between G. yamadae and G. asiaticum, indicating the biological processes involved in haustoria were relatively conserved, despite the typical host selectivity between species. The low protein similarity between the two species suggested that they were under greater host selective pressure and there was significant evolutionary divergence, which might be related to the host-specific selection mechanism. In the haustorial, the main purpose of the effectors might be to regulate physiological processes in the plants rather than attacking the host directly, and G. yamadae and G. asiaticum might use plant lipids as energy sources.
Transcriptome
;
Reproducibility of Results
;
Plant Diseases/microbiology*
;
Gene Expression Profiling/methods*
9.Preparation of gene chip for detecting different expression genes involved in aflatoxin biosynthesis.
Chinese Journal of Preventive Medicine 2009;43(5):423-427
OBJECTIVETo develop the methodology of gene chip to analyse genes involved in aflatoxin biosynthesis.
METHODSIn comparing reversed transcriptional PCR with gene chip, the gene chip was used to detect genes involved in aflatoxin biosynthesis.
RESULTSAfter arrayed the slide was incubated in water for 2 hours, exposed to a 650 mJ/cm2 of ultraviolet irradiation in the strata-linker for 30 s, roasted under 80 degrees C for 2 hours in oven, pre-hybridized for 45 minutes and dealt with other procedures. Finally, the slide was hybridized with fluor-derivatized sample at 42 degrees C for 16 hours.
CONCLUSIONWith the reasonable probe design and applicable protocol, the gene chip was prepared effectively for research on genes involved in aflatoxin biosynthesis.
Aflatoxins ; biosynthesis ; Gene Expression Profiling ; Oligonucleotide Array Sequence Analysis ; methods
10.Transcriptome profiling and analysis of Panax japonicus var. major.
Shao-peng ZHANG ; Jian JIN ; Bing-xiong HU ; Ya-yun WU ; Qi YAN ; Wan-yong ZENG ; Yong-lian ZHENG ; Zhang XI-FENG ; Ping CHEN
China Journal of Chinese Materia Medica 2015;40(11):2084-2089
The rhizome of Panax japonicus var. major have been used as the natural medicinal agent by Chinese traditional doctors for more than thousand years. Most of the therapeutic effects of P. japonicus var. major had been reported due to the presence of tetracyclic or pentacyclic triterpene saponins. In this study, Illumina pair-end RNA-sequencing and de novo splicing were done in order to understand the pathway of triterpenoid saponins in this species. The valid reads data of 15. 6 Gb were obtained. The 62 240 unigenes were finally obtained by de novo splicing. After annotation, we discovered 19 unigenes involved in ginsenoside backbone biosynthesis. Additionally, 69 unigenes and 18 unigenes were predicted to have potential function of cytochrome P450 and UDP-glycosyltransferase based on the annotation results, which may encode enzymes responsible for ginsenoside backbone modification. This study provides global expressed datas for P. japonicus var. major, which will contribute significantly to further genome-wide research and analysis for this species.
Gene Expression Profiling
;
Panax
;
genetics
;
Saponins
;
biosynthesis
;
Sequence Analysis, RNA