1.High performance liquid chromatography analysis of the active ingredients and evaluation of anti-caries potential of Thai propolis extracts.
John Erick B. QUINIQUINI ; Waraporn PUTALUN ; Waranuch PITIPHAT ; Nutthapong KANTRONG ; Suttichai KRISANAPRAKORNKIT ; Pattama CHAILERTVANITKUL
Acta Medica Philippina 2025;59(10):110-118
OBJECTIVE
This study aimed to determine and quantify the presence of the active components in Thai propolis extracts using high performance liquid chromatography (HPLC). Moreover, the anti-caries potential of Thai propolis extract and its active ingredients were tested.
METHODSFifty milligrams of Thai propolis were extracted using either 100%, 90%, 80%, or 70% ethanol and subsequently analyzed using HPLC with a mobile phase gradient system of 10-100% acetonitrile in 0.05% aqueous ortho-phosphoric acid, flow rate of 0.8 mL/min, and detection wavelength of 280 nm. Varying concentrations of Thai propolis extracts as well as four active ingredients were subjected to agar well diffusion test against the growth of Streptococcus mutans (S. mutans) or Lactobacillus caseii (L. caseii).
RESULTSThe concentrations of the four active ingredients: vicenin-2, vitexin, apigenin, and cinnamic acid, were significantly affected by ethanolic concentrations. The chromatographic peaks of all active ingredients from 70% and 80% ethanolic extracts appeared more defined, as compared to those which used higher concentrations of ethanol for extraction. Except for the absolute ethanolic extract, all of the examined propolis extracts, as well as its active ingredients inhibited both S. mutans and L. caseii.
CONCLUSIONThai propolis extracts contain vicenin-2, vitexin, apigenin, and cinnamic acid as part of its active ingredients. These were found to be significantly affected by the increase in ethanol during its extraction. The presence of these active ingredients might have contributed to the anti-caries potential of Thai propolis extracts.
Flavonoids ; Chromatography, High Pressure Liquid
2.Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'.
Xiaotian QIN ; Mengge GUO ; Shaohua QIN ; Ruidan CHEN
Chinese Journal of Biotechnology 2024;40(1):239-251
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Animals
;
Anthocyanins
;
DNA Shuffling
;
Flowers/genetics*
;
Porifera
;
Prunus/genetics*
;
Glutamine/analogs & derivatives*
;
Plant Extracts
3.Flavonoid Myricetin as Potent Anticancer Agent: A Possibility towards Development of Potential Anticancer Nutraceuticals.
Anchal TRIVEDI ; Adria HASAN ; Rumana AHMAD ; Sahabjada SIDDIQUI ; Aditi SRIVASTAVA ; Aparna MISRA ; Snober S MIR
Chinese journal of integrative medicine 2024;30(1):75-84
Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.
Humans
;
Flavonoids/chemistry*
;
Antineoplastic Agents/chemistry*
;
Dietary Supplements
;
Antioxidants/pharmacology*
;
Neoplasms/drug therapy*
4.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
5.High performance liquid chromatography analysis of the active ingredients and evaluation of anti-caries potential of Thai propolis extracts
John Erick B. Quiniquini ; Waraporn Putalun ; Waranuch Pitiphat ; Nutthapong Kantrong ; Suttichai Krisanaprakornkit ; Pattama Chailertvanitkul
Acta Medica Philippina 2024;58(Early Access 2024):1-9
Objective:
This study aimed to determine and quantify the presence of the active components in Thai propolis extracts using high performance liquid chromatography (HPLC). Moreover, the anti-caries potential of Thai propolis extract and its active ingredients were tested.
Methods:
Fifty milligrams of Thai propolis were extracted using either 100%, 90%, 80%, or 70% ethanol and subsequently analyzed using HPLC with a mobile phase gradient system of 10-100% acetonitrile in 0.05% aqueous ortho-phosphoric acid, flow rate of 0.8 mL/min, and detection wavelength of 280 nm. Varying concentrations of Thai propolis extracts as well as four active ingredients were subjected to agar well diffusion test against the growth of Streptococcus mutans (S. mutans) or Lactobacillus caseii (L. caseii).
Results:
The concentrations of the four active ingredients: vicenin-2, vitexin, apigenin, and cinnamic acid, were significantly affected by ethanolic concentrations. The chromatographic peaks of all active ingredients from 70% and 80% ethanolic extracts appeared more defined, as compared to those which used higher concentrations of ethanol for extraction. Except for the absolute ethanolic extract, all of the examined propolis extracts, as well as its active ingredients inhibited both S. mutans and L. caseii.
Conclusions
Thai propolis extracts contain vicenin-2, vitexin, apigenin, and cinnamic acid as part of its active ingredients. These were found to be significantly affected by the increase in ethanol during its extraction. The presence of these active ingredients might have contributed to the anti-caries potential of Thai propolis extracts.
flavonoids
;
chromatography, high performance liquid
6.Downregulation of microRNA-23a confers protection against myocardial ischemia/reperfusion injury by upregulating tissue factor pathway inhibitor 2 following luteolin pretreatment in rats.
Yuanyuan LUO ; Li LI ; Lele WANG ; Pingping SHANG ; Defeng PAN ; Yang LIU ; Tongda XU ; Dongye LI
Chinese Medical Journal 2023;136(7):866-867
7.Site-directed mutagenesis enhances the activity of benzylidene acetone synthase of polyketide synthase from Polygonum cuspidatum.
Zhimin HE ; Wenrui MA ; Liping YU ; Heshu LÜ ; Mingfeng YANG
Chinese Journal of Biotechnology 2023;39(7):2806-2817
Polygonum cuspidatum polyketide synthase 1 (PcPKS1) has the catalytic activity of chalcone synthase (CHS) and benzylidene acetone synthase (BAS), which can catalyze the production of polyketides naringenin chalcone and benzylidene acetone, and then catalyze the synthesis of flavonoids or benzylidene acetone. In this study, three amino acid sites (Thr133, Ser134, Ser33) that may affect the function of PcPKS1 were identified by analyzing the sequences of PcPKS1, the BAS from Rheum palmatum and the CHS from Arabidopsis thaliana, as well as the conformation of the catalytic site of the enzyme. Molecular modification of PcPKS1 was carried out by site-directed mutagenesis, and two mutants were successfully obtained. The in vitro enzymatic reactions were carried out, and the differences in activity were detected by high performance liquid chromatography (HPLC). Finally, mutants T133LS134A and S339V with bifunctional activity were obtained. In addition to bifunctional activities of BAS and CHS, the modified PcPKS1 had much higher BAS activity than that of the wild type PcPKS1 under the conditions of pH 7.0 and pH 9.0, respectively. It provides a theoretical basis for future use of PcPKS1 in genetic engineering to regulate the biosynthesis of flavonoids and raspberry ketones.
Amino Acid Sequence
;
Fallopia japonica/metabolism*
;
Polyketide Synthases/chemistry*
;
Acetone
;
Mutagenesis, Site-Directed
;
Flavonoids/metabolism*
;
Acyltransferases/metabolism*
8.Research progress on the preparation and application of flavonoid nanocrystals.
Yiting TIAN ; Zhiqun SHI ; Huiping MA
Journal of Zhejiang University. Medical sciences 2023;52(3):338-348
Flavonoids have been reported to possess significant pharmacological activities,such as antioxidant, anti-inflammatory and anticancer effects. However, the low solubility and low bioavailability limits their clinical application. Nanocrystal technology can solve the delivery problems of flavonoids by reducing particle size, increasing the solubility of insoluble drugs and improving their bioavailability. This article summaries nanosuspension preparation methods and the stabilizers for flavonoid nanocrystals, and reviews the drug delivery routes including oral, Injection and transdermal of flavonoid nanocrystals, to provide information for further research on nanocrystal delivery system of flavonoids.
Flavonoids/pharmacology*
;
Pharmaceutical Preparations/chemistry*
;
Biological Availability
;
Nanoparticles/chemistry*
;
Anti-Inflammatory Agents
;
Particle Size
9.Inhibitory Effect of Kaempferol on Proliferation of KG1a Cells and Its Mechanism.
Zhe CHEN ; Ling ZHANG ; Xiao-Fei YUAN ; Bing-Hua GAO ; Bin ZHANG ; Xia WANG
Journal of Experimental Hematology 2023;31(2):319-326
OBJECTIVE:
To investigate the effect of kaempferol on proliferation of acute myeloid leukemia (AML) KG1a cells and its mechanism.
METHODS:
Human AML KG1a cells in logarithmic growth stage were taken and set at 25, 50, 75 and 100 μg/ml kaempferol group, another normal control group (complete medium without drug) and solvent control group (add dimethyl sulfoxide) were also set. After 24 and 48 hours of intervention, the cell proliferation rate was detected by CCK-8 assay. In addition, interleukin-6 (IL-6) combined with kaempferol group (Plus 20 μg/l IL-6 and 75 μg/ml kaempferol) was set up, 48 hours after culture, the cell cycle and apoptosis of KG1a cells were detected by flow cytometry, the mitochondrial membrane potential (MMP) of KG1a cells was detected by MMP detection kit (JC-1 method), and the expression of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway related proteins in KG1a cells were detected by Western blot.
RESULTS:
The cell proliferation rate of 25, 50, 75 and 100 μg/ml kaempferol group decreased significantly (P<0.05), and with the increase of kaempferol dose (r24 h=-0.990, r48 h= -0.999), the cell proliferation rate decreased gradually (P<0.05). The inhibitory effect of 75 μg/ml kaempferol on cell proliferation reached half of effective dose after 48 hours of intervention. Compared with normal control group, the G0/G1 phase cell proportion and apoptosis rate of cells in 25, 50 and 75 μg/ml kaempferol group increased, while the S phase cell proportion, MMP, phosphorylated JAK2 (p-JAK2)/JAK2 and phosphorylated STAT3 (p-STAT3)/STAT3 protein expression decreased in a dose-dependent manner (r=0.998, 0.994, -0.996, -0.981, -0.997, -0.930). Compared with 75 μg/ml kaempferol group, the G0/G1 phase cell proportion and apoptosis rate of cells in IL-6 combined with kaempferol group decreased, while the S phase cell proportion, MMP, p-JAK2/JAK2 and p-STAT3/STAT3 protein expression increased significantly (P<0.05).
CONCLUSION
Kaempferol can inhibit KG1a cell proliferation and induce KG1a cell apoptosis, its mechanism may be related to the inhibition of JAK2/STAT3 signal pathway.
Humans
;
STAT3 Transcription Factor/metabolism*
;
Interleukin-6/metabolism*
;
Kaempferols/pharmacology*
;
Signal Transduction
;
Apoptosis
;
Janus Kinase 2
;
Cell Proliferation
;
Leukemia, Myeloid, Acute
10.Diacylated anthocyanins from purple sweet potato (Ipomoeabatatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet.
Luhong SHEN ; Yang YANG ; Jiuliang ZHANG ; Lanjie FENG ; Qing ZHOU
Journal of Zhejiang University. Science. B 2023;24(7):587-601
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
Mice
;
Animals
;
Hyperuricemia/drug therapy*
;
Diet, High-Fat/adverse effects*
;
Anthocyanins/chemistry*
;
Ipomoea batatas/chemistry*
;
Fructose/adverse effects*
;
Hyperglycemia/drug therapy*
;
Lipids


Result Analysis
Print
Save
E-mail