1.Potential role of FNDC5 in exercise-induced improvement of cognitive function.
Ruobing ZHAO ; Xuchang ZHOU ; Dongxue WANG ; Haifeng TANG ; Guoxin NI
Journal of Zhejiang University. Science. B 2025;26(6):557-572
Cognitive dysfunction often occurs in Alzheimer's disease, Parkinson's disease, cerebrovascular disease, or other neurodegenerative diseases, and can significantly impact the life quality of patients and create serious social, psychological, and economic burdens for individuals and their families. Numerous studies have confirmed that exercise can slow the decline in cognitive function through multiple pathways, in which fibronectin type III domain-containing protein 5 (FNDC5) plays an important role. However, the current research on the modulation of FNDC5 by exercise and its ability to improve hippocampal cognitive function lacks a systematic and comprehensive understanding. Therefore, this review focuses on the latest research progress regarding the role of exercise-induced FNDC5 in cognitive function, systematically reviews the positive effects of FNDC5 on cognitive function impairment caused by various factors, and clarifies the specific mechanisms by which exercise-induced FNDC5 improves cognitive function by inhibiting neuroinflammation and improving hippocampal neurogenesis and hippocampal synaptic plasticity. Based on the existing literature, we also identify the areas that require further research in this field. Overall, this review provides a theoretical basis for exercise-based prevention and improvement of cognitive function impairment.
Humans
;
Cognition/physiology*
;
Fibronectins/physiology*
;
Exercise/physiology*
;
Hippocampus/physiology*
;
Cognitive Dysfunction/prevention & control*
;
Neuronal Plasticity
;
Animals
;
Neurogenesis
2.CEACAM6 inhibits proliferation and migration of nasopharyngeal carcinoma cells by suppressing epithelial-mesenchymal transition.
Lu TAO ; Zhuoli WEI ; Yueyue WANG ; Ping XIANG
Journal of Southern Medical University 2025;45(3):566-576
OBJECTIVES:
To investigate CEACAM6 expression in nasopharyngeal carcinoma (NPC) and its regulatory effects on tumor cell proliferation, migration, and epithelial-mesenchymal transition (EMT).
METHODS:
CEACAM6 expression in NPC was analyzed using GEO datasets and validated by immunohistochemistry in NPC tissues and by Western blotting and RT-qPCR in NPC cell lines (HNE1, C666-1, HK1, 5-8F and CNE2Z) and normal nasopharyngeal epithelial NP69 cells. In the NPC cell lines, the effects of lentivirus-mediated CEACAM6 overexpression and knockdown on cell proliferation, migration, invasion and cytoskeletal structures were evaluated using CCK-8 assay, Edu staining, wound healing assay, Transwell assay, and phalloidin staining. Western blotting was performed to determine the expressions of EMT-related proteins (FN1, ITGA5, ITGB1, E-cadherin, N-cadherin and vimentin) in the NPC cells and the effect of FN1 overexpression on ITGA5 and ITGB1 protein expressions.
RESULTS:
Analysis of the data from the GEO datasets suggested that CEACAM6 was significantly downregulated in NPC, which was associated with poor patient prognosis. Immunohistochemistry also showed low expressions of CEACAM6 in clinical NPC tissues (P<0.05). In NPC cells, CEACAM6 overexpression significantly suppressed cell proliferation, migration and invasion and reduced the fluorescence intensity of actin. CEACAM6 overexpression also resulted in significant downregulation of FN1, ITGA5, ITGB1, N-cadherin and vimentin expressions and upregulation of E-cadherin expression, and FN1 overexpression obviously attenuated the inhibitory effect of CEACAM6 overexpression on ITGA5 and ITGB1 expressions.
CONCLUSIONS
CEACAM6 inhibits NPC cell migration and invasion by inhibiting EMT via regulating FN1, ITGA5 and ITGB1 expressions.
Humans
;
Epithelial-Mesenchymal Transition
;
Cell Movement
;
Cell Proliferation
;
Nasopharyngeal Carcinoma
;
Nasopharyngeal Neoplasms/metabolism*
;
Cell Line, Tumor
;
Cell Adhesion Molecules/genetics*
;
Antigens, CD/metabolism*
;
GPI-Linked Proteins
;
Integrin alpha5/metabolism*
;
Integrin beta1/metabolism*
;
Cadherins/metabolism*
;
Fibronectins
;
Integrins
3.Diterpenoids and lignans from fossil Chinese medicinal succinum and their activity against renal fibrosis.
Yefei CHEN ; Yunfei WANG ; Yunyun LIU ; Yongming YAN ; Yongxian CHENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):888-896
Five previously undescribed diterpenoids, named succipenoids D‒H (1‒5), along with four undescribed lignans, named succignans A‒D (6‒9), were isolated from the dichloromethane extract of Chinese medicinal succinum. Compounds 1‒5 were characterized as nor-abietane diterpenoids, while compounds 6‒9 were identified as lignans polymerized from two groups of phenylpropanoid units. The structures of these novel compounds, including their absolute configurations, were determined through spectroscopic and computational methods. Biological assessments of renal fibrosis demonstrated that compounds 6 and 7 effectively reduce the expression of proteins associated with renal fibrosis, including α-smooth muscle actin (α-SMA), collagen I, and fibronectin in transforming growth factor-β1 (TGF-β1) induced normal rat kidney proximal tubular epithelial cells (NRK-52e).
Animals
;
Rats
;
Lignans/isolation & purification*
;
Diterpenes/isolation & purification*
;
Fibrosis/drug therapy*
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Structure
;
Cell Line
;
Kidney Diseases/pathology*
;
Transforming Growth Factor beta1/genetics*
;
Kidney/metabolism*
;
Actins/genetics*
;
Fibronectins/genetics*
;
Collagen Type I/genetics*
;
Epithelial Cells/metabolism*
4.Expression of LRG-1 in mice with hypertensive renal damage and its significance.
Linlin ZHANG ; Xiangcheng XIAO ; Xueling HU ; Wei WANG ; Ling PENG ; Rong TANG
Journal of Central South University(Medical Sciences) 2023;48(6):837-845
OBJECTIVES:
Long-term elevated blood pressure may lead to kidney damage, yet the pathogenesis of hypertensive kidney damage is still unclear. This study aims to explore the role and significance of leucine-rich alpha-2-glycoprotein-1 (LRG-1) in hypertensive renal damage through detecting the levels of LRG-1 in the serum and kidney of mice with hypertensive renal damage and its relationship with related indexes.
METHODS:
C57BL/6 mice were used in this study and randomly divided into a control group, an angiotensin II (Ang II) group, and an Ang II+irbesartan group. The control group was gavaged with physiological saline. The Ang II group was pumped subcutaneously at a rate of 1.5 mg/(kg·d) for 28 days to establish the hypertensive renal damage model in mice, and then gavaged with equivalent physiological saline. The Ang II+irbesartan group used the same method to establish the hypertensive renal damage model, and then was gavaged with irbesartan. Immunohistochemistry and Western blotting were used to detect the expression of LRG-1 and fibrosis-related indicators (collagen I and fibronectin) in renal tissues. ELISA was used to evaluate the level of serum LRG-1 and inflammatory cytokines in mice. The urinary protein-creatinine ratio and renal function were determined, and correlation analysis was conducted.
RESULTS:
Compared with the control group, the levels of serum LRG-1, the expression of LRG-1 protein, collagen I, and fibronectin in kidney in the Ang II group were increased (all P<0.01). After treating with irbesartan, renal damage of hypertensive mice was alleviated, while the levels of LRG-1 in serum and kidney were decreased, and the expression of collagen I and fibronectin was down-regulated (all P<0.01). Correlation analysis showed that the level of serum LRG-1 was positively correlated with urinary protein-creatinine ratio, blood urea nitrogen, and blood creatinine level in hypertensive kidney damage mice. Serum level of LRG-1 was also positively correlated with serum inflammatory factors including TNF-α, IL-1β, and IL-6.
CONCLUSIONS
Hypertensive renal damage mice display elevated expression of LRG-1 in serum and kidney, and irbesartan can reduce the expression of LRG-1 while alleviating renal damage. The level of serum LRG-1 is positively correlated with the degree of hypertensive renal damage, suggesting that it may participate in the occurrence and development of hypertensive renal damage.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Fibronectins
;
Irbesartan
;
Creatinine
;
Kidney/physiology*
;
Hypertension/complications*
;
Angiotensin II
;
Collagen Type I
5.Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis.
Mai A ABD-ELMAWLA ; Heba R GHAIAD ; Enas S GAD ; Kawkab A AHMED ; Maha ABDELMONEM
Journal of Zhejiang University. Science. B 2023;24(8):723-733
Ivermectin is a US Food and Drug Administration (FDA)-approved antiparasitic agent with antiviral and anti-inflammatory properties. Although recent studies reported the possible anti-inflammatory activity of ivermectin in respiratory injuries, its potential therapeutic effect on pulmonary fibrosis (PF) has not been investigated. This study aimed to explore the ability of ivermectin (0.6 mg/kg) to alleviate bleomycin-induced biochemical derangements and histological changes in an experimental PF rat model. This can provide the means to validate the clinical utility of ivermectin as a treatment option for idiopathic PF. The results showed that ivermectin mitigated the bleomycin-evoked pulmonary injury, as manifested by the reduced infiltration of inflammatory cells, as well as decreased the inflammation and fibrosis scores. Intriguingly, ivermectin decreased collagen fiber deposition and suppressed transforming growth factor-β1 (TGF-β1) and fibronectin protein expression, highlighting its anti-fibrotic activity. This study revealed for the first time that ivermectin can suppress the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, as manifested by the reduced gene expression of NLRP3 and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), with a subsequent decline in the interleukin-1β (IL-1β) level. In addition, ivermectin inhibited the expression of intracellular nuclear factor-κB (NF-κB) and hypoxia‑inducible factor‑1α (HIF-1α) proteins along with lowering the oxidative stress and apoptotic markers. Altogether, this study revealed that ivermectin could ameliorate pulmonary inflammation and fibrosis induced by bleomycin. These beneficial effects were mediated, at least partly, via the downregulation of TGF-β1 and fibronectin, as well as the suppression of NLRP3 inflammasome through modulating the expression of HIF‑1α and NF-κB.
Animals
;
Rats
;
Anti-Inflammatory Agents
;
Bleomycin/toxicity*
;
Fibronectins/metabolism*
;
Fibrosis
;
Inflammasomes/metabolism*
;
Ivermectin/adverse effects*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pulmonary Fibrosis/drug therapy*
6.The mechanism of S100A7 inducing the migration and invasion in cervical cancer cells.
Tian TIAN ; Zhen HUA ; Yan KONG ; Ling Zhi WANG ; Xiang Yu LIU ; Yi HAN ; Xue Min ZHOU ; Zhu Mei CUI
Chinese Journal of Oncology 2023;45(5):375-381
Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.
Female
;
Humans
;
Uterine Cervical Neoplasms/pathology*
;
HeLa Cells
;
Fibronectins/metabolism*
;
Culture Media, Conditioned
;
Carcinoma, Squamous Cell/metabolism*
;
Adenocarcinoma
;
Cadherins/metabolism*
;
RNA, Messenger/metabolism*
;
Cell Movement
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
S100 Calcium Binding Protein A7/metabolism*
7.Extracellular matrix remodelling in dental pulp tissue of carious human teeth through the prism of single-cell RNA sequencing.
Anamaria BALIC ; Dilara PERVER ; Pierfrancesco PAGELLA ; Hubert REHRAUER ; Bernd STADLINGER ; Andreas E MOOR ; Viola VOGEL ; Thimios A MITSIADIS
International Journal of Oral Science 2023;15(1):30-30
Carious lesions are bacteria-caused destructions of the mineralised dental tissues, marked by the simultaneous activation of immune responses and regenerative events within the soft dental pulp tissue. While major molecular players in tooth decay have been uncovered during the past years, a detailed map of the molecular and cellular landscape of the diseased pulp is still missing. In this study we used single-cell RNA sequencing analysis, supplemented with immunostaining, to generate a comprehensive single-cell atlas of the pulp of carious human teeth. Our data demonstrated modifications in the various cell clusters within the pulp of carious teeth, such as immune cells, mesenchymal stem cells (MSC) and fibroblasts, when compared to the pulp of healthy human teeth. Active immune response in the carious pulp tissue is accompanied by specific changes in the fibroblast and MSC clusters. These changes include the upregulation of genes encoding extracellular matrix (ECM) components, including COL1A1 and Fibronectin (FN1), and the enrichment of the fibroblast cluster with myofibroblasts. The incremental changes in the ECM composition of carious pulp tissues were further confirmed by immunostaining analyses. Assessment of the Fibronectin fibres under mechanical strain conditions showed a significant tension reduction in carious pulp tissues, compared to the healthy ones. The present data demonstrate molecular, cellular and biomechanical alterations in the pulp of human carious teeth, indicative of extensive ECM remodelling, reminiscent of fibrosis observed in other organs. This comprehensive atlas of carious human teeth can facilitate future studies of dental pathologies and enable comparative analyses across diseased organs.
Humans
;
Dental Pulp
;
Fibronectins
;
Extracellular Matrix/pathology*
;
Dental Caries
;
Sequence Analysis, RNA
9.Aqueous extract of Epimedium sagittatum mitigates pulmonary fibrosis in mice.
Ru WANG ; Fei-Yue HOU ; Meng-Nan ZENG ; Bei-Bei ZHANG ; Qin-Qin ZHANG ; Shuang-Shuang XIE ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2023;48(20):5612-5622
This study aims to investigate the intervention effect of the aqueous extract of Epimedium sagittatum Maxim on the mouse model of bleomycin(BLM)-induced pulmonary fibrosis, so as to provide data support for the clinical treatment of pulmonary fibrosis. Ninety male C57BL/6N mice were randomized into normal(n=10), model(BLM, n=20), pirfenidone(PFD, 270 mg·kg~(-1), n=15), and low-, medium-, and high-dose E. sagittatum extract(1.67 g·kg~(-1), n=15; 3.33 g·kg~(-1), n=15; 6.67 g·kg~(-1), n=15) groups. The model of pulmonary fibrosis was established by intratracheal instillation of BLM(5 mg·kg~(-1)) in the other five groups except the normal group, which was treated with an equal amount of normal saline. On the day following the modeling, each group was treated with the corresponding drug by gavage for 21 days. During this period, the survival rate of the mice was counted. After gavage, the lung index was calculated, and the morphology and collagen deposition of the lung tissue were observed by hematoxylin-eosin(HE) and Masson staining, respectively. The levels of reactive oxygen species(ROS) in lung cell suspensions were measured by flow cytometry. The levels of glutathione peroxidase(GSH-Px), total superoxide dismutase(T-SOD), and malondialdehyde(MDA) the in lung tissue were measured. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling(TUNEL) was employed to examine the apoptosis of lung tissue cells. The content of interleukin-6(IL-6), chemokine C-C motif ligand 2(CCL-2), matrix metalloproteinase-8(MMP-8), transforming growth factor-beta 1(TGF-β1), alpha-smooth muscle actin(α-SMA), E-cadherin, collagen Ⅰ, and fibronectin in the lung tissue was measured by enzyme-linked immunosorbent assay(ELISA). The expression levels of F4/80, Ly-6G, TGF-β1, and collagen Ⅰ in the lung tissue were determined by immunohistochemistry. The mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue were determined by qRT-PCR. The content of hydroxyproline(HYP) in the lung tissue was determined by alkaline hydrolysation. The expression of α-SMA and E-cadherin was detected by immunofluorescence, and the protein levels of α-SMA, vimentin, E-cadherin in the lung tissue were determined by Western blot. The results showed the aqueous extract of E. sagittatum increased the survival rate, decreased the lung index, alleviated the pathological injury, collagen deposition, and oxidative stress in the lung tissue, and reduced the apoptotic cells. Furthermore, the aqueous extract of E. sagittatum down-regulated the protein levels of F4/80 and Ly-6G and the mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue, reduced the content of IL-6, CCL-2, and MMP-8 in the alveolar lavage fluid. In addition, it lowered the levels of HYP, TGF-β1, α-SMA, collagen Ⅰ, fibronectin, and vimentin, and elevated the levels of E-cadherin in the lung tissue. The aqueous extract of E. sagittatum can inhibit collagen deposition, alleviate oxidative stress, and reduce inflammatory response by regulating the expression of the molecules associated with epithelial-mesenchymal transition, thus alleviating the symptoms of bleomycin-induced pulmonary fibrosis in mice.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Epimedium/metabolism*
;
Fibronectins/metabolism*
;
Matrix Metalloproteinase 7/therapeutic use*
;
Matrix Metalloproteinase 8/therapeutic use*
;
Vimentin/metabolism*
;
Interleukin-6/metabolism*
;
Mice, Inbred C57BL
;
Lung
;
Collagen/metabolism*
;
Bleomycin/toxicity*
;
RNA, Messenger/metabolism*
;
Cadherins/metabolism*
10.Protective effect and mechanism of Maiwei Yangfei Decoction on pulmonary fibrosis mice based on Nrf2 regulation of oxidative stress.
Yun WEI ; Jing WANG ; Di HAN ; Tong-Xing HUANG ; Le BAI ; Li-Wei CHEN ; Yong XU ; Xian-Mei ZHOU
China Journal of Chinese Materia Medica 2023;48(24):6682-6692
This study explored the effect and mechanism of Maiwei Yangfei Decoction(MWYF) on pulmonary fibrosis(PF) mice. MWYF was prepared, and its main components were detected by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS). Male C57BL/6J mice were randomly divided into a control group, a model group, a pirfenidone(PFD) group, and low-, medium-, and high-dose MWYF groups, with 10 mice in each group. The PF model was induced in mice except for those in the control group by intratracheal instillation of bleomycin(BLM), and model mice were treated with saline or MWYF or PFD by gavage the next day. The water consumption, food intake, hair, and activity of mice were observed daily. The pathological changes in lung tissues were observed by hematoxylin-eosin(HE) staining, Masson staining, and CT scanning. The level of hydroxyproline(HYP) in lung tissues was detected by alkaline hydrolysis. Immunohistochemistry was used to observe the expression of collagen type Ⅲ(COL3) and fibronectin. The mRNA expression levels of α-smooth muscle actin(α-SMA), type Ⅰ collagen α1(COL1α1), COL3, and vimentin were detected by reverse transcription real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). Superoxide dismutase(SOD) and malondialdehyde(MDA) kits were used to detect oxidative stress indicators in lung tissues and serum. The nuclear translocation of nuclear factor E2-related factor 2(Nrf2) protein was detected by immunofluorescence. The protein and mRNA expression levels of Nrf2, catalase(CAT), and heme oxygenase 1(HO-1) in lung tissues were detected by Western blot and RT-qPCR. Twelve chemical components were detected by UPLC-MS/MS. Animal experiments showed that MWYF could improve alveolar inflammation, collagen deposition, and fibrosis in PF mice, increase body weight of mice, and down-regulate the expression of fibrosis indexes such as HYP, α-SMA, COL1α1, COL3, fibronectin, and vimentin in lung tissues. In addition, MWYF could potentiate the activity of SOD in lung tissues and serum of PF mice, up-regulate the expression level of Nrf2, and promote its transfer to the nucleus, up-regulate the levels of downstream antioxidant target genes CAT and HO-1, and then reduce the accumulation of lipid metabolite MDA. In summary, MWYF can significantly improve the pathological damage and fibrosis of lung tissues in PF mice, and its mechanism may be related to the activation of the Nrf2 pathway to regulate oxidative stress.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/chemically induced*
;
NF-E2-Related Factor 2/metabolism*
;
Fibronectins/metabolism*
;
Vimentin/metabolism*
;
Chromatography, Liquid
;
Mice, Inbred C57BL
;
Tandem Mass Spectrometry
;
Oxidative Stress
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger/metabolism*

Result Analysis
Print
Save
E-mail