1.Antimicrobial resistance profile of Escherichia coli isolated from raw chicken meat in a selected wet market in Manila City, Philippines.
Lyder Kyle A. DIMAAPI ; Angela Lorraine G. DELA CRUZ ; Roger Andrei D. FRANCISCO ; Rei Gilian D. NOBLE ; Hayley Emerald G. SABANGAN ; Azita Racquel GAVINO-LACUNA ; Maria Margarita M. LOTA
Acta Medica Philippina 2025;59(9):107-122
BACKGROUND AND OBJECTIVE
Antimicrobial resistance (AMR) is a leading global public health concern as it resulted in more difficult-to-treat infections and fatalities. In the Philippines, drug-resistant E. coli, including multidrug-resistant (MDR), extended-spectrum beta-lactamase (ESBL)-producing, carbapenemase-producing carbapenem-resistant (CP-CR) E. coli, have been isolated from common food animals, increasing the risk of cross-contamination between humans, animals, and the environment. However, there is a lack of data on the distribution of E. coli in chicken meat in public wet markets. This study aims to describe the AMR profile of E. coli in raw chicken meat from retail stalls in a selected wet market in Manila City.
METHODSThis quantitative descriptive study characterized the AMR profile of E. coli isolated from 25 raw chicken meat samples from a wet market in Manila City. Antimicrobial susceptibility was determined through disk diffusion method against 23 antimicrobial agents in 16 antimicrobial classes. MDR E. coli were identified based on the resistance patterns. ESBL- and carbapenemase-producing capacities of the bacteria were tested through double disk synergy test and modified carbapenem inactivation method, respectively.
RESULTSTwenty-four out of 25 (96%) chicken samples contained E. coli isolates. Of these, 23 (96%) were classified as MDR. High resistance rates were observed against ampicillin (92%), tetracycline (88%), trimethoprim-sulfamethoxazole (83%), chloramphenicol (79%), ampicillin-sulbactam (75%), amoxicillin-clavulanic acid (67%), fosfomycin (67%), and streptomycin (54%). The majority of the E. coli isolates were still susceptible to a wide range of selected antimicrobial agents, including carbapenems (100%), ceftriaxone (100%), cefepime (100%), cefuroxime (96%), cefotaxime (96%), ceftazidime (96%), piperacillin-tazobactam (96%), aztreonam (96%), cefoxitin (92%), and nitrofurantoin (83%), among others. Meanwhile, none of the 24 isolated E. coli samples were classified as ESBL- and CP-CR E. coli.
CONCLUSIONAmong the 25 chicken samples, 24 E. coli colonies were isolated that exhibited 0% to 92% resistance rates against selected antimicrobial agents. Most isolates were classified as MDR, but none were considered ESBLand CP-CR E. coli. This study suggests that chickens in wet markets can potentially serve as reservoir hosts for drugresistance genes, which could transfer to other bacteria and contaminate humans, animals, and the environment within the food production and supply chain. These findings emphasize the need for AMR surveillance and strategies to combat AMR in the Philippines through the One Health approach.
Human ; Drug Resistance ; Drug Resistance, Multiple ; Carbapenemase ; Escherichia Coli
2.Antimicrobial resistance profile of Escherichia coli isolated from raw chicken meat in a selected wet market in Manila City, Philippines
Lyder Kyle A. Dimaapi ; Angela Lorraine G. Dela Cruz ; Roger Andrei D. Francisco ; Rei Gilian D. Noble ; Hayley Emerald G. Sabangan ; Azita Racquel Gavino-Lacuna ; Maria Margarita M. Lota
Acta Medica Philippina 2024;58(Early Access 2024):1-16
Background and Objective:
Antimicrobial resistance (AMR) is a leading global public health concern as it resulted in more difficult-to-treat infections and fatalities. In the Philippines, drug-resistant E. coli, including multidrug-resistant (MDR), extended-spectrum beta-lactamase (ESBL)-producing, carbapenemase-producing carbapenem-resistant (CP-CR) E. coli, have been isolated from common food animals, increasing the risk of cross-contamination between humans, animals, and the environment. However, there is a lack of data on the distribution of E. coli in chicken meat in public wet markets. This study aims to describe the AMR profile of E. coli in raw chicken meat from retail stalls in a selected wet market in Manila City.
Methods:
This quantitative descriptive study characterized the AMR profile of E. coli isolated from 25 raw chicken meat samples from a wet market in Manila City. Antimicrobial susceptibility was determined through disk diffusion method against 23 antimicrobial agents in 16 antimicrobial classes. MDR E. coli were identified based on the resistance patterns. ESBL- and carbapenemase-producing capacities of the bacteria were tested through double disk synergy test and modified carbapenem inactivation method, respectively.
Results:
Twenty-four out of 25 (96%) chicken samples contained E. coli isolates. Of these, 23 (96%) were classified as MDR. High resistance rates were observed against ampicillin (92%), tetracycline (88%), trimethoprim-sulfamethoxazole (83%), chloramphenicol (79%), ampicillin-sulbactam (75%), amoxicillin-clavulanic acid (67%), fosfomycin (67%), and streptomycin (54%). The majority of the E. coli isolates were still susceptible to a wide range of selected antimicrobial agents, including carbapenems (100%), ceftriaxone (100%), cefepime (100%), cefuroxime (96%), cefotaxime (96%), ceftazidime (96%), piperacillin-tazobactam (96%), aztreonam (96%), cefoxitin (92%), and nitrofurantoin (83%), among others. Meanwhile, none of the 24 isolated E. coli samples were classified as ESBL- and CP-CR E. coli.
Conclusion
Among the 25 chicken samples, 24 E. coli colonies were isolated that exhibited 0% to 92% resistance rates against selected antimicrobial agents. Most isolates were classified as MDR, but none were considered ESBLand CP-CR E. coli. This study suggests that chickens in wet markets can potentially serve as reservoir hosts for drugresistance genes, which could transfer to other bacteria and contaminate humans, animals, and the environment within the food production and supply chain. These findings emphasize the need for AMR surveillance and strategies to combat AMR in the Philippines through the One Health approach.
drug resistance
;
multi-drug resistance
;
drug resistance, multiple
;
carbapenemase
;
Escherichia coli
3.Antimicrobial activity of Ardisia serrata (Cavs.) Pers. ethanolic and aqueous leaf extract on the growth and biofilm formation of selected bacterial isolates
Patrick Josemaria DR. Altavas ; Alfonso Rafael G. Abaya ; Remo Vittorio Thaddeus D. Abella ; Danna Lee A. Acosta ; Angelica C. Aguilar ; Camille Anne V. Aguinaldo ; Katrina Loise L. Aguirre ; Catherine Therese C. Amante ; Karen B. Amora ; Glen Aldrix R. Anarna ; Rafael T. Andrada ; Gere Ganixon T. Ang ; Jeram Caezar R. Angobung ; Angelo V. Aquino II ; Dennielle Ann P. Arabis ; Hannah Luisa G. Awitan ; Mary Faith D. Baccay ; Chryz Angelo Jonathan B. Bagsic ; Tomas V. Baldosano Jr. ; Cecilia C. Maramba-Lazarte
Acta Medica Philippina 2024;58(18):91-97
Background:
Ardisia serrata (Aunasin) is an endemic Philippine plant of the family Primulaceae, with several studiesshowing the genus Ardisia as having potential antibacterial, antiangiogenic, cytotoxic, and antipyretic properties.
Objective:
This study aims to determine the antibacterial and antibiofilm-forming activity of Ardisia serrata ethanolic and aqueous extracts on Escherichia coli, Methicillin-Sensitive Staphylococcus aureus (MSSA), and Methicillin-Resistant Staphylococcus aureus (MRSA).
Methods:
This is an experimental study testing the activity against bacterial strains of E. coli, MSSA, and MRSA using ethanolic and aqueous extracts of A. serrata leaves. Microtiter susceptibility and biofilm inhibition assays were done with two-fold dilutions of the extract against the selected strains using spectrophotometry with optical density (OD) at 600 nm and 595 nm, respectively, to quantify bacterial growth and biofilm inhibition. The bacterial susceptibility and biofilm inhibition activity was reported as percent inhibition (PI). Minimum inhibitory concentration (MIC), and minimum biofilm inhibition concentration (MBIC) values were obtained using logarithmic regression of the PI values.
Results:
A. serrata ethanolic extracts showed weak growth inhibitory activity against MSSA and MRSA with minimum inhibitory concentration (MIC) values of 2.6192 and 3.2988 mg/mL, respectively, but no biofilm inhibition activity was noted, while the aqueous extracts exhibited negligible biofilm inhibition activity against MSSA and MRSA with minimum biofilm inhibition concentration (MBIC) values of 13.5972 and 8964.82 mg/mL, respectively, and with no growth inhibition activity. Both ethanolic and aqueous extracts showed no growth inhibition and biofilm inhibition activities against E. coli.
Conclusion
Staphylococcus aureus is susceptible to the bioactivity of the leaf extracts of A. serrata and has potential to be used as an antibacterial in the treatment of infectious diseases.
Methicillin-resistant Staphylococcus aureus
;
Escherichia coli
;
natural product
;
biological products
4.Genotyping Characteristics of Human Fecal Escherichia coli and Their Association with Multidrug Resistance in Miyun District, Beijing.
Wei Wei ZHANG ; Xiao Lin ZHU ; Le Le DENG ; Ya Jun HAN ; Zhuo Wei LI ; Jin Long WANG ; Yong Liang CHEN ; Ao Lin WANG ; Er Li TIAN ; Bin CHENG ; Lin Hua XU ; Yi Cong CHEN ; Li Li TIAN ; Guang Xue HE
Biomedical and Environmental Sciences 2023;36(5):406-417
OBJECTIVE:
To explore the genotyping characteristics of human fecal Escherichia coli( E. coli) and the relationships between antibiotic resistance genes (ARGs) and multidrug resistance (MDR) of E. coli in Miyun District, Beijing, an area with high incidence of infectious diarrheal cases but no related data.
METHODS:
Over a period of 3 years, 94 E. coli strains were isolated from fecal samples collected from Miyun District Hospital, a surveillance hospital of the National Pathogen Identification Network. The antibiotic susceptibility of the isolates was determined by the broth microdilution method. ARGs, multilocus sequence typing (MLST), and polymorphism trees were analyzed using whole-genome sequencing data (WGS).
RESULTS:
This study revealed that 68.09% of the isolates had MDR, prevalent and distributed in different clades, with a relatively high rate and low pathogenicity. There was no difference in MDR between the diarrheal (49/70) and healthy groups (15/24).
CONCLUSION
We developed a random forest (RF) prediction model of TEM.1 + baeR + mphA + mphB + QnrS1 + AAC.3-IId to identify MDR status, highlighting its potential for early resistance identification. The causes of MDR are likely mobile units transmitting the ARGs. In the future, we will continue to strengthen the monitoring of ARGs and MDR, and increase the number of strains to further verify the accuracy of the MDR markers.
Humans
;
Escherichia coli/genetics*
;
Escherichia coli Infections/epidemiology*
;
Multilocus Sequence Typing
;
Genotype
;
Beijing
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
Diarrhea
;
Microbial Sensitivity Tests
5.Expression, purification, and characterization of the histidine kinase CarS from Fusobacterium nucleatum.
Zhuting LI ; Xian SHI ; Ruochen FAN ; Lulu WANG ; Tingting BU ; Wei ZHENG ; Xuqiang ZHANG ; Chunshan QUAN
Chinese Journal of Biotechnology 2023;39(4):1596-1608
Fusobacterium nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. The two-component system plays an important role in the regulation and expression of genes related to pathogenic resistance and pathogenicity. In this paper, we focused on the CarRS two-component system of F. nucleatum, and the histidine kinase protein CarS was recombinantly expressed and characterized. Several online software such as SMART, CCTOP and AlphaFold2 were used to predict the secondary and tertiary structure of the CarS protein. The results showed that CarS is a membrane protein with two transmembrane helices and contains 9 α-helices and 12 β-folds. CarS protein is composed of two domains, one is the N-terminal transmembrane domain (amino acids 1-170), the other is the C-terminal intracellular domain. The latter is composed of a signal receiving domain (histidine kinases, adenylyl cyclases, methyl-accepting proteins, prokaryotic signaling proteins, HAMP), a phosphate receptor domain (histidine kinase domain, HisKA), and a histidine kinase catalytic domain (histidine kinase-like ATPase catalytic domain, HATPase_c). Since the full-length CarS protein could not be expressed in host cells, a fusion expression vector pET-28a(+)-MBP-TEV-CarScyto was constructed based on the characteristics of secondary and tertiary structures, and overexpressed in Escherichia coli BL21-Codonplus(DE3)RIL. CarScyto-MBP protein was purified by affinity chromatography, ion-exchange chromatography, and gel filtration chromatography with a final concentration of 20 mg/ml. CarScyto-MBP protein showed both protein kinase and phosphotransferase activities, and the MBP tag had no effect on the function of CarScyto protein. The above results provide a basis for in-depth analysis of the biological function of the CarRS two-component system in F. nucleatum.
Humans
;
Histidine Kinase/metabolism*
;
Fusobacterium nucleatum/metabolism*
;
Automobiles
;
Protein Kinases/genetics*
;
Escherichia coli/metabolism*
;
Colorectal Neoplasms
6.Synergistic effect of β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli in vitro.
Muchen ZHANG ; Huangwei SONG ; Zhiyu ZOU ; Siyuan YANG ; Hui LI ; Chongshan DAI ; Dejun LIU ; Bing SHAO ; Congming WU ; Jianzhong SHEN ; Yang WANG
Chinese Journal of Biotechnology 2023;39(4):1621-1632
The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.
Humans
;
Tigecycline/pharmacology*
;
Escherichia coli/metabolism*
;
Reactive Oxygen Species/therapeutic use*
;
Plasmids
;
Anti-Bacterial Agents/metabolism*
;
Escherichia coli Infections/microbiology*
;
Bacteria/genetics*
;
Microbial Sensitivity Tests
7.A new biosynthesis route for production of 5-aminovalanoic acid, a biobased plastic monomer.
Yaqi KANG ; Ruoshi LUO ; Fanzhen LIN ; Jie CHENG ; Zhen ZHOU ; Dan WANG
Chinese Journal of Biotechnology 2023;39(5):2070-2080
5-aminovalanoic acid (5AVA) can be used as the precursor of new plastics nylon 5 and nylon 56, and is a promising platform compound for the synthesis of polyimides. At present, the biosynthesis of 5-aminovalanoic acid generally is of low yield, complex synthesis process and high cost, which hampers large-scale industrial production. In order to achieve efficient biosynthesis of 5AVA, we developed a new pathway mediated by 2-keto-6-aminohexanoate. By combinatory expression of L-lysine α-oxidase from Scomber japonicus, α-ketoacid decarcarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli, the synthesis of 5AVA from L-lysine in Escherichia coli was achieved. Under the initial conditions of glucose concentration of 55 g/L and lysine hydrochloride of 40 g/L, the final consumption of 158 g/L glucose and 144 g/L lysine hydrochloride, feeding batch fermentation to produce 57.52 g/L of 5AVA, and the molar yield is 0.62 mol/mol. The new 5AVA biosynthetic pathway does not require ethanol and H2O2, and achieved a higher production efficiency as compared to the previously reported Bio-Chem hybrid pathway mediated by 2-keto-6-aminohexanoate.
Nylons
;
Lysine/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Metabolic Engineering
;
Plastics/metabolism*
;
Fermentation
;
Escherichia coli/metabolism*
;
Aminocaproates/metabolism*
8.Modular engineering of Escherichia coli for high-level production of l-tryptophan.
Shuang DING ; Xiulai CHEN ; Cong GAO ; Wei SONG ; Jing WU ; Wanqing WEI ; Jia LIU ; Liming LIU
Chinese Journal of Biotechnology 2023;39(6):2359-2374
As an essential amino acid, l-tryptophan is widely used in food, feed and medicine sectors. Nowadays, microbial l-tryptophan production suffers from low productivity and yield. Here we construct a chassis E. coli TRP3 producing 11.80 g/L l-tryptophan, which was generated by knocking out the l-tryptophan operon repressor protein (trpR) and the l-tryptophan attenuator (trpL), and introducing the feedback-resistant mutant aroGfbr. On this basis, the l-tryptophan biosynthesis pathway was divided into three modules, including the central metabolic pathway module, the shikimic acid pathway to chorismate module and the chorismate to tryptophan module. Then we used promoter engineering approach to balance the three modules and obtained an engineered E. coli TRP9. After fed-batch cultures in a 5 L fermentor, tryptophan titer reached to 36.08 g/L, with a yield of 18.55%, which reached 81.7% of the maximum theoretical yield. The tryptophan producing strain with high yield laid a good foundation for large-scale production of tryptophan.
Escherichia coli/metabolism*
;
Tryptophan
;
Metabolic Engineering
;
Bioreactors
;
Metabolic Networks and Pathways
9.Metabolic engineering of Escherichia coli for adipic acid production.
Jie LIU ; Cong GAO ; Xiulai CHEN ; Liang GUO ; Wei SONG ; Jing WU ; Wanqing WEI ; Jia LIU ; Liming LIU
Chinese Journal of Biotechnology 2023;39(6):2375-2389
Adipic acid is a high-value-added dicarboxylic acid which is primarily used in the production of nylon-66 for manufacturing polyurethane foam and polyester resins. At present, the biosynthesis of adipic acid is hampered by its low production efficiency. By introducing the key enzymes of adipic acid reverse degradation pathway into a succinic acid overproducing strain Escherichia coli FMME N-2, an engineered E. coli JL00 capable of producing 0.34 g/L adipic acid was constructed. Subsequently, the expression level of the rate-limiting enzyme was optimized and the adipic acid titer in shake-flask fermentation increased to 0.87 g/L. Moreover, the supply of precursors was balanced by a combinatorial strategy consisting of deletion of sucD, over-expression of acs, and mutation of lpd, and the adipic acid titer of the resulting E. coli JL12 increased to 1.51 g/L. Finally, the fermentation process was optimized in a 5 L fermenter. After 72 h fed-batch fermentation, adipic acid titer reached 22.3 g/L with a yield of 0.25 g/g and a productivity of 0.31 g/(L·h). This work may serve as a technical reference for the biosynthesis of various dicarboxylic acids.
Escherichia coli/metabolism*
;
Metabolic Engineering
;
Bioreactors
;
Fermentation
;
Adipates/metabolism*
10.Development of a whole-cell biosensor for detecting organophosphorus pesticide methyl parathion in the farmland soil.
Chinese Journal of Biotechnology 2023;39(7):2706-2718
The evaluation of the bioavailability of pollutants in soil is crucial to accurately assess the pollution risk, and whole-cell biosensor is one of the important tools for such evaluation. This study aimed to develop a novel whole-cell biosensor for the detection of methyl parathion in soil using. First, a whole-cell biosensor was constructed by the screened methyl parathion hydrolase mpd gene, the existing specific induction element pobR, and the pUC19 plasmid skeleton. Then, the detection method of methyl parathion in soil extracts was established using 96-well microtiter plate as carrier and five whole-cell biosensors as indicator. The method was applied in the detection of methyl parathion in tested and field soil extracts. Taking E. coli DH5α/pMP-AmilCP with the best detection performance as an example, this biosensor had a detection limit of 6.21-6.66 µg/L and a linear range of 10-10 000 µg/L for methyl parathion in four soil extracts. E. coli DH5α/pMP-RFP and E. coli DH5α/pMP-AmilCP methods have good detection performance for the analysis of methyl parathion in soil extract samples. This biosensor method can help to quickly assess the bioavailability of methyl parathion in soil, and thus help to understand the risk of soil pollution caused by organophosphorus pesticide methyl parathion.
Methyl Parathion/analysis*
;
Pesticides/analysis*
;
Organophosphorus Compounds
;
Escherichia coli/genetics*
;
Soil
;
Farms
;
Biosensing Techniques


Result Analysis
Print
Save
E-mail