1.Effects of Tiaoshu Anshen acupuncture on sleep quality and serum neurotransmitter levels in patients with chronic insomnia.
Lian LIU ; Tianya YAN ; Zhuangzhi CHEN ; Zhen KANG ; Mengyao LI ; Qiongjue GAO ; Zuoai QIN ; Yecheng WEN ; Weiai LIU ; Zhongying FU
Chinese Acupuncture & Moxibustion 2025;45(2):151-155
OBJECTIVE:
To observe the effects of Tiaoshu Anshen (regulating the hinge and calming the mind) acupuncture on sleep quality and serum levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in patients with chronic insomnia.
METHODS:
A total of 58 patients with chronic insomnia were randomly divided into an acupuncture group and a medication group, 29 cases in each group. Tiaoshu Anshen acupuncture was applied at Baihui (GV20) and bilateral Shenmen (HT7), Sanyinjiao (SP6), Benshen (GB13) in the acupuncture group, once a day, 1-day interval was taken after 6 consecutive days of treatment. Estazolam tablet was given orally before bed in the medication group, 1 mg each time. The 4-week treatment was required in both groups. Before and after treatment, the sleep quality was assessed by Pittsburgh sleep quality index (PSQI) and polysomnography (PSG), the serum levels of 5-HT and DA were detected by ELISA.
RESULTS:
After treatment, the item scores and total scores of PSQI were decreased compared with those before treatment in the two groups (P<0.05); in the acupuncture group, the scores of sleep quality, sleep latency, sleep time, sleep efficiency, sleep disorders and total score of PSQI were lower than those in the medication group (P<0.05). After treatment, the total sleep time (TST) was prolonged (P<0.05), the sleep latency (SL) and wake after sleep onset (WASO) were shortened (P<0.05), the sleep efficiency (SE%), percentage of non-rapid eye movement stage 3 (N3%), percentage of rapid eye movement stage (REM%) and serum levels of 5-HT were increased (P<0.05) compared with those before treatment; the percentage of non-rapid eye movement stage 1 (N1%), percentage of non-rapid eye movement stage 2 (N2%) and serum levels of DA were decreased (P<0.05) compared with those before treatment in the two groups. After treatment, in the acupuncture group, TST was longer, while SL and WASO were shorter than those in the medication group (P<0.05), SE%, N3%, REM% and serum level of 5-HT were higher, while N1%, N2% and serum level of DA were lower than those in the medication group (P<0.05).
CONCLUSION
Tiaoshu Anshen acupuncture may improve the sleep quality by regulating the serum neurotransmitter levels i.e. 5-HT and DA in patients with chronic insomnia.
Humans
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Male
;
Acupuncture Therapy
;
Female
;
Middle Aged
;
Adult
;
Serotonin/blood*
;
Sleep Quality
;
Acupuncture Points
;
Dopamine/blood*
;
Aged
;
Neurotransmitter Agents/blood*
;
Young Adult
2.Neuroprotective effects of idebenone combined with borneol via the dopamine signaling pathway in a transgenic zebrafish model of Parkinson's disease.
Qifei WANG ; Yayun ZHONG ; Yanan YANG ; Kechun LIU ; Li LIU ; Yun ZHANG
Journal of Biomedical Engineering 2025;42(5):1046-1053
The aim of this study is to investigate the protective effect of idebenone (IDE) combined with borneol (BO) against Parkinson's disease (PD). In this study, wild-type AB zebrafish and transgenic Tg ( vmat2: GFP) zebrafish with green fluorescence labeled dopamine neurons were used to establish the PD model with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP). Following drug treatment, the behavioral performance and dopamine neuron morphology of zebrafish were evaluated, and regulation of dopamine signaling pathway-related genes was determined using RT-qPCR. The results showed that IDE combined with BO improved the behavioral disorders of zebrafish such as bradykinesia and shortening movement distance, also effectively reversed the damage of MPTP-induced dopaminergic neurons. At the same time, the expression of dopamine synthesis and transportation-related genes was up-regulated, and the normal function of the signal transduction pathway was restored. The combination showed a better therapeutic effect compared to the IDE monotherapy group. This study reveals the protective mechanism of IDE combined with BO on the central nervous system for the first time, which provides an important experimental basis and theoretical reference for clinical combination strategy in PD treatment.
Animals
;
Zebrafish
;
Signal Transduction/drug effects*
;
Animals, Genetically Modified
;
Dopamine/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Disease Models, Animal
;
Camphanes/pharmacology*
;
Ubiquinone/pharmacology*
;
Parkinson Disease/drug therapy*
;
Dopaminergic Neurons/metabolism*
3.Research progress of neurotransmitters in lung injury after traumatic brain injury.
Le CAO ; Haikun ZHANG ; Jinxiang YU ; Pengcheng MA ; Lifeng JIA ; Tao ZHAO
Chinese Critical Care Medicine 2025;37(10):982-988
Traumatic brain injury (TBI), as a significant central nervous system damage disease with high frequency in the world, leads to a huge number of patients with impaired health and lower quality of life every year. Lung injury is a common and dangerous consequence, which dramatically raises the mortality of patients. Discovering the pathophysiology of lung injury after TBI and discovering viable therapeutic targets has become an important need for clinical diagnosis and therapy. Neurotransmitters, as the fundamental chemical agents of the nervous system for signal transmission, not only govern neuronal activity and apoptosis in TBI but also significantly influence the pathophysiological mechanisms of lung injury subsequent to TBI. The imbalance is intricately linked to the onset and progression of lung damage. This paper systematically reviews the clinical characteristics and predominant pathogenesis of lung injury following TBI, emphasizing the role of key neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA), norepinephrine (NE), dopamine (DA), and acetylcholine (ACh), in lung injury post-TBI. It examines their influence on inflammatory response, vascular permeability, and pulmonary circulation function. Additionally, the paper evaluates the research advancements and potential applications of targeted therapeutic strategies for various neurotransmitter systems, such as receptor antagonists, transporter inhibitors, and neurotransmitter analogues. This research aims to offer a theoretical framework for clarifying the neural regulatory mechanisms of lung injury following TBI and to establish a basis for the development of novel therapeutic strategies and enhancement of the prognosis of the patients.
Humans
;
Brain Injuries, Traumatic/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Lung Injury/metabolism*
;
gamma-Aminobutyric Acid/metabolism*
;
Glutamic Acid/metabolism*
;
Norepinephrine/metabolism*
;
Dopamine/metabolism*
;
Acetylcholine/metabolism*
4.A comprehensive review of the efficacy and safety of dopamine agonists for women with endometriosis-associated infertility from inception to July 31, 2022
Acta Medica Philippina 2024;58(10):49-64
Background:
Current medical management of endometriosis leads to suppression of ovulation and will not be helpful for women with endometriosis who are desirous of pregnancy. Thus, drugs that can both treat endometriosis and its associated infertility are highly warranted.
Objective:
Anti-angiogenic agents are potential drugs for patients with endometriosis and infertility. Among these drugs, dopamine agonist (DA) is promising since it does not interfere with ovulation, is safe, and not teratogenic. The aim of the study is to determine the efficacy and safety of DA for improving reproductive outcomes in women with endometriosis and infertility.
Methods:
A qualitative narrative review was done from inception to July 31, 2022 using the appropriate MeSH terms in PubMed, Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, ClinicalTrial.gov, and World Health Organization International Clinical Trials Registry Platform. Date analysis was through qualitative analysis and synthesis of researches and their outcome measures.
Results:
No studies used the core outcomes for trials evaluating treatments for infertility associated with endometriosis. All the included articles in the review supported the possible anti-angiogenic effects of DA on the vascular endothelial growth factor [VEGF] /VEGF receptor system. The use of DA does not have an effect on ovulation and menstrual cyclicity. Studies on safety profile of DA were consistent with existing data.
Conclusion
Most of studies reviewed demonstrated that DA were effective in reducing endometriotic lesions. However, further research is required to establish whether this anti-angiogenic effect can improve reproductive outcomes in women with endometriosis-associated infertility.
Endometriosis
;
Dopamine Agonists
;
Infertility
;
Angiogenesis Inducing Agents
;
Angiogenesis Inhibitors
5.The Dynamics of Dopamine D2 Receptor-Expressing Striatal Neurons and the Downstream Circuit Underlying L-Dopa-Induced Dyskinesia in Rats.
Kuncheng LIU ; Miaomiao SONG ; Shasha GAO ; Lu YAO ; Li ZHANG ; Jie FENG ; Ling WANG ; Rui GAO ; Yong WANG
Neuroscience Bulletin 2023;39(9):1411-1425
L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.
Rats
;
Animals
;
Levodopa/toxicity*
;
Dopamine
;
Parkinsonian Disorders/drug therapy*
;
Oxidopamine
;
Dyskinesia, Drug-Induced
;
Corpus Striatum/metabolism*
;
Neurons/metabolism*
;
Receptors, Dopamine D2/metabolism*
;
Antiparkinson Agents/toxicity*
6.Blockade of the Dopamine D3 Receptor Attenuates Opioids-Induced Addictive Behaviours Associated with Inhibiting the Mesolimbic Dopamine System.
Rong-Rong HU ; Meng-Die YANG ; Xiao-Yan DING ; Ning WU ; Jin LI ; Rui SONG
Neuroscience Bulletin 2023;39(11):1655-1668
Opioid use disorder (OUD) has become a considerable global public health challenge; however, potential medications for the management of OUD that are effective, safe, and nonaddictive are not available. Accumulating preclinical evidence indicates that antagonists of the dopamine D3 receptor (D3R) have effects on addiction in different animal models. We have previously reported that YQA14, a D3R antagonist, exhibits very high affinity and selectivity for D3Rs over D2Rs, and is able to inhibit cocaine- or methamphetamine-induced reinforcement and reinstatement in self-administration tests. In the present study, our results illustrated that YQA14 dose-dependently reduced infusions under the fixed-ratio 2 procedure and lowered the breakpoint under the progressive-ratio procedure in heroin self-administered rats, also attenuated heroin-induced reinstatement of drug-seeking behavior. On the other hand, YQA14 not only reduced morphine-induced expression of conditioned place preference but also facilitated the extinguishing process in mice. Moreover, we elucidated that YQA14 attenuated opioid-induced reward or reinforcement mainly by inhibiting morphine-induced up-regulation of dopaminergic neuron activity in the ventral tegmental area and decreasing dopamine release in the nucleus accumbens with a fiber photometry recording system. These findings suggest that D3R might play a very important role in opioid addiction, and YQA14 may have pharmacotherapeutic potential in attenuating opioid-induced addictive behaviors dependent on the dopamine system.
Rats
;
Mice
;
Animals
;
Analgesics, Opioid
;
Dopamine
;
Heroin/pharmacology*
;
Dopamine Antagonists/pharmacology*
;
Receptors, Dopamine D3/metabolism*
;
Morphine/pharmacology*
;
Behavior, Addictive/drug therapy*
;
Self Administration
7.Effects of umbilical moxibustion on phobic behavior and monoamine neurotransmitters in stress-model rats.
Ming-Min PAN ; Qi-Yang WANG ; Jun-Lin HOU ; Tong ZHANG ; Yu JIANG ; Li-Ping YANG
Chinese Acupuncture & Moxibustion 2023;43(2):191-196
OBJECTIVE:
To investigate the effects of umbilical moxibustion therapy on phobic behavior and the contents of norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) in different brain regions of the stress-model rats and explore the potential mechanism of umbilical moxibustion on phobic behavior.
METHODS:
Among 50 Wistar male rats, 45 rates were selected and randomly divided into a control group, a model group and an umbilical moxibustion group, 15 rats in each one; and the rest 5 rats were used for preparing the model of electric shock. The bystander electroshock method was adopted to prepare phobic stress model in the model group and the umbilical moxibustion group. After modeling, the intervention with umbilical moxibustion started in the umbilical moxibustion group, in which, the ginger-isolated moxibustion was applied at "Shenque" (CV 8), once daily, 2 cones for 20 min each time, for consecutively 21 days. After modeling and intervention completed, the rats in each group were subjected to the open field test to evaluate the state of fear. After intervention, the Morris water maze test and fear conditioning test were performed to evaluate the changes in learning and memory ability and the state of fear. Using high performance liquid chromatography (HPLC), the contents of NE, DA and 5-HT in the hippocampus, prefrontal cortex and hypothalamus were determined.
RESULTS:
Compared with the control group, the horizontal and vertical activity scores were lower (P<0.01), the number of stool particles was increased (P<0.01), the escape latency was prolonged (P<0.01), the times of target quadrant were reduced (P<0.01), and the freezing time was prolonged (P<0.05) in the rats of the model group. The horizontal and vertical activity scores were increased (P<0.05), the number of stool particles was reduced (P<0.05), the escape latency was shortened (P<0.05, P<0.01), the times of target quadrant were increased (P<0.05), and the freezing time was shortened (P<0.05) in the rats of the umbilical moxibustion group when compared with the model group. The trend search strategy was adopted in the control group and the umbilical moxibustion group, while the random search strategy was used in rats of the model group. Compared with the control group, the contents of NE, DA and 5-HT in the hippocampus, prefrontal cortex and hypothalamus were reduced (P<0.01) in the model group. In the umbilical moxibustion group, the contents of NE, DA and 5-HT in the hippocampus, prefrontal cortex and hypothalamus were increased (P<0.05, P<0.01) when compared with the model group.
CONCLUSION
Umbilical moxibustion can effectively relieve the state of fear and learning and memory impairment of phobic stress model rats, which may be related to the up-regulation of contents of brain neurotransmitters, i.e. NE, DA, and 5-HT.
Rats
;
Male
;
Animals
;
Moxibustion
;
Rats, Sprague-Dawley
;
Rats, Wistar
;
Serotonin
;
Hippocampus
;
Dopamine
;
Norepinephrine
;
Neurotransmitter Agents
8.Effect of Rehmanniae Radix on depression-like behavior and hippocampal monoamine neurotransmitters of chronic unpredictable mild stress model rats.
Ping TIAN ; Wei ZHANG ; Kai-Yan LI ; Hong-Wei LI ; Kai MA ; De-En HAN
China Journal of Chinese Materia Medica 2022;47(17):4691-4697
To investigate the effect of Rehmanniae Radix on depression-like behavior and monoamine neurotransmitters of chronic unpredictable mild stress(CUMS) model rats. CUMS combined with isolated feeding was used to induce the depression model of rats. The depression-like behavior of rats was evaluated by sucrose preference test, open field test, and forced swim test. Hematoxylin-Eosin(HE) staining was used to investigate the pathological changes of neurons in the CA1 and CA3 area of hippocampus. Ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS) was used to detect the contents of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), 3,4-dihydroxyphenylacetic acid(DOPAC), homovanillic acid(HVA), norepinephrine(NE), and 3-methoxy-4-hydroxyphenyl glycol(MHPG) in rats. Western blot was used to detect the protein expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), and monoamine oxidase A(MAO-A) in the hippocampus of rats. Compared with the normal group, depressive-like behavior of rats was obvious in the model group. The arrangements of neurons in the CA1 and CA3 area of hippocampus were loose and disorderly. The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in the hippocampal area were decreased(P<0.01). The protein expression of TPH2 was decreased(P<0.01), but those of SERT and MAO-A were increased(P<0.01). In the Rehmanniae Radix groups with 1.8 g·kg~(-1) and 7.2 g·kg~(-1), the depression-like behavior of CUMS rats and pathological changes of neurons in CA1, CA3 area of hippocampus were improved. The protein expression of TPH2(P<0.05, P<0.01) was increased, and those of SERT and MAO-A were down-regulated(P<0.05, P<0.01). The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in hippocampus were increased(P<0.05, P<0.01). The changes in DA, DOPAC, HVA, DA/(DOPAC +HVA), NE, DHPG, and NE/DHPG were not statistically significant. The results suggested that Rehmanniae Radix improved depression-like behavior of CUMS rats, and the mechanism might be related to the regulation of synthesis, transportation, and metabolism of 5-HT neurotransmitter in the hippocampus.
3,4-Dihydroxyphenylacetic Acid/pharmacology*
;
Animals
;
Antidepressive Agents/therapeutic use*
;
Chromatography, Liquid
;
Depression/drug therapy*
;
Disease Models, Animal
;
Dopamine
;
Eosine Yellowish-(YS)/pharmacology*
;
Hematoxylin/pharmacology*
;
Hippocampus/metabolism*
;
Homovanillic Acid/pharmacology*
;
Hydroxyindoleacetic Acid/metabolism*
;
Methoxyhydroxyphenylglycol/pharmacology*
;
Monoamine Oxidase/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Norepinephrine/pharmacology*
;
Plant Extracts
;
Rats
;
Rehmannia/chemistry*
;
Serotonin/metabolism*
;
Serotonin Plasma Membrane Transport Proteins/pharmacology*
;
Stress, Psychological/metabolism*
;
Tandem Mass Spectrometry
;
Tryptophan Hydroxylase/metabolism*
9.Chromosomal Deletion in 7q31.2-31.32 Involving Ca2⁺-Dependent Activator Protein for Secretion Gene in a Patient with Cerebellar Ataxia: a Case Report
Seungbeen HONG ; Su Ji LEE ; Sung Rae CHO
Brain & Neurorehabilitation 2020;13(1):9-
We present a 33-year-old male patient with cerebellar ataxia. He was first considered to have a psychiatric conversion disorder but finally found to have chromosomal deletion in 7q31.2-31.32 involving Ca2⁺-dependent activator protein for secretion (CADPS) gene. When a targeted gene sequencing using next-generation sequencing panel and chromosomal microarray analysis were performed, an 8.6 Mb deletion within chromosome 7q31.2-31.32 was discovered. Deletion of CADPS gene in the 7q31.2-31.32 was suggested as the causative factor of cerebellar ataxia. Functional levels evaluated by Berg balance scale and modified Barthel index were improved via comprehensive rehabilitation including balance training and a dopamine agonist medication. To the best of our knowledge, this is the first report of chromosomal deletion in 7q31.2-31.32 including CADPS gene detected in patients with cerebellar ataxia.
Adult
;
Cerebellar Ataxia
;
Chromosome Disorders
;
Conversion Disorder
;
Dopamine Agonists
;
Humans
;
Male
;
Microarray Analysis
;
Rehabilitation
10.Pharmacological Treatment in Parkinson's Disease
Journal of the Korean Neurological Association 2019;37(4):335-344
Parkinson's disease is one of the most common neurodegenerative disorders world widely. Although curable therapies are practically not available yet, symptomatic managements using anti-Parkinson medications have shown to be quite effective to improve patients' quality of life. The discovery of dopaminergic deficits in Parkinson's disease in 1960s have brought about the human clinical trials of levodopa, which opened an “Era of Dopamine” in treatment history of the Parkinson's disease. Levodopa still remains gold standard. Dopamine agonists have proved their efficacies and delayed the development of long-term complications of levodopa use. Inhibitors of respective enzyme monoamine oxidase-B and catechol-O-methyltransferase, anticholinergics, and amantadine strengthen the therapeutic effects via either monotherapy or adjunctive way. Strategy of continuous dopaminergic stimulation and disease modification are weighing in current advances. This article is providing evidence-based review of pharmacological treatment of Parkinson's disease from early to advanced stages as well as management its unavoidable adverse reactions.
Amantadine
;
Catechol O-Methyltransferase
;
Cholinergic Antagonists
;
Dopamine Agonists
;
Drug Therapy
;
Humans
;
Levodopa
;
Neurodegenerative Diseases
;
Parkinson Disease
;
Quality of Life
;
Therapeutic Uses


Result Analysis
Print
Save
E-mail