1.Research status and prospect of tissue engineering technology in treatment of atrophic rhinitis.
Shuting LEI ; Juanjuan HU ; Yingqi TANG ; Weigang GAN ; Yuting SONG ; Yanlin JIANG ; Honghui ZHANG ; Yaya GAO ; Hui YANG ; Huiqi XIE
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(6):727-731
OBJECTIVE:
To review the research progress of the feasibility of a new treatment method for atrophic rhinitis (ATR) based on tissue engineering technology (seed cells, scaffold materials, and growth factors), and provide new ideas for the treatment of ATR.
METHODS:
The literature related to ATR was extensively reviewed. Focusing on the three aspects of seed cells, scaffold materials, and growth factors, the recent research progress of ATR treatment was reviewed, and the future directions of tissue engineering technology to treat ATR were proposed.
RESULTS:
The pathogenesis and etiology of ATR are still unclear, and the effectiveness of the current treatments are still unsatisfactory. The construction of a cell-scaffold complex with sustained and controlled release of exogenous cytokines is expected to reverse the pathological changes of ATR, promoting the regeneration of normal nasal mucosa and reconstructing the atrophic turbinate. In recent years, the research progress of exosomes, three-dimensional printing, and organoids will promote the development of tissue engineering technology for ATR.
CONCLUSION
Tissue engineering technology can provide a new treatment method for ATR.
Humans
;
Tissue Engineering/methods*
;
Tissue Scaffolds
;
Rhinitis, Atrophic
;
Printing, Three-Dimensional
;
Cytokines
2.Application of decellularization-recellularization technique in plastic and reconstructive surgery.
Yujia SHANG ; Guanhuier WANG ; Yonghuan ZHEN ; Na LIU ; Fangfei NIE ; Zhenmin ZHAO ; Hua LI ; Yang AN
Chinese Medical Journal 2023;136(17):2017-2027
In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.
Tissue Engineering/methods*
;
Tissue Scaffolds/chemistry*
;
Surgery, Plastic
;
Regenerative Medicine/methods*
;
Extracellular Matrix
4.Research, development and application of collagen: a review.
Tao YE ; Qi XIANG ; Yan YANG ; Yadong HUANG
Chinese Journal of Biotechnology 2023;39(3):942-960
Collagen, which widely exists in skin, bone, muscle and other tissues, is a major structural protein in mammalian extracellular matrix. It participates in cell proliferation, differentiation, migration and signal transmission, plays an important role in tissue support and repair and exerts a protective effect. Collagen is widely used in tissue engineering, clinical medicine, food industry, packaging materials, cosmetics and medical beauty due to its good biological characteristics. This paper reviews the biological characteristics of collagen and its application in bioengineering research and development in recent years. Finally, we prospect the future application of collagen as a biomimetic material.
Animals
;
Collagen/analysis*
;
Tissue Engineering/methods*
;
Extracellular Matrix/metabolism*
;
Biomimetic Materials/chemistry*
;
Bone and Bones
;
Tissue Scaffolds
;
Mammals/metabolism*
5.Some thoughts on the research of mesenchymal stem cell exosomes and wound microenvironment.
Chinese Journal of Burns 2023;39(2):101-105
Since researchers have found that the conditioned medium and exosomes of mesenchymal stem cells (MSCs) had the biological effects equivalent to those of MSCs, MSC exosomes (MSC-Exos), the representative product of MSCs' paracrine effect, have become the research focus of the "cell-free" therapy of MSCs. However, most researchers currently use conventional culture condition to culture MSCs and then isolate exosomes for the treatment of wound or other diseases. Theoretically, the paracrine effect of MSCs is directly associated with the pathological condition of the wound (disease) microenvironment or in vitro culture condition, and their paracrine components and biological effects may be altered with the changes of the wound (disease) microenvironment or in vitro culture condition. Thus, the feasibility of using traditional culture condition to culture MSCs for exosome extraction for the treatment of different diseases without considering the actual situation of the disease to be treated needs further discussion. Therefore, the author suggests that the research of MSC-Exos should consider the microenvironment of the wound (disease) to be treated. as much as possible, otherwise the extracted MSC-Exos may not be "accurate" or may not really achieve the treatment effect of MSCs. In this article, we summarized some thoughts of the author and problems related to the researches about MSC-Exos and wound microenvironment, and hoped to discuss with researchers.
Exosomes
;
Cell- and Tissue-Based Therapy
;
Culture Media, Conditioned
;
Mesenchymal Stem Cells
6.Effect of pH on the chelation between strontium ions and decellularized small intestinal submucosal sponge scaffolds.
Yu Ke LI ; Mei WANG ; Lin TANG ; Yu Hua LIU ; Xiao Ying CHEN
Journal of Peking University(Health Sciences) 2023;55(1):44-51
OBJECTIVE:
To investigate the preparation of decellularized small intestinal submucosa (dSIS) sponge scaffolds with chelated strontium (Sr) ions at different pH values, and to select the appropriate pH values for synthesizing Sr/dSIS scaffolds using the physicochemical properties and biocompatibility of the scaffolds as evaluation indexes.
METHODS:
(1) Sr/dSIS scaffolds preparation and grouping: After mixing dSIS solution and strontium chloride solution in equal volumes, adjusting pH of the solution to 3, 5, 7, and 9 respectively, porous scaffolds were prepared by freeze-drying method after full reaction at 37℃, which were named Sr/dSIS-3, -5, -7, and -9 respectively, and the dSIS scaffolds were used as the control group. (2) Physicochemical property evaluation: The bulk morphology of the scaffolds was observed in each group, the microscopic morphology analyzed by scanning electron microscopy, and the porosity and pore size determined, the surface elements analyzed by energy spectroscopy, the structure of functional groups analyzed by infrared spectroscopy, the chelation rate determined by atomic spectrophotometry, the water absorption rate detected by using specific gravity method, and the compression strength evaluated by universal mechanical testing machine.(3) Biocompatibility evaluation: The cytotoxicity and proliferative effect to bone mesenchymal stem cells (BMSCs) of each group were evaluated by Calcein-AM/PI double staining method.
RESULTS:
Scanning electron microscopy showed that the scaffolds of each group had an interconnected three-dimensional porous structure with no statistical difference in pore size and porosity. Energy spectrum analysis showed that strontium could be detected in Sr/dSIS-5, -7 and -9 groups, and strontium was uniformly distributed in the scaffolds. Functional group analysis further supported the formation of chelates in the Sr/dSIS-5, -7 and -9 groups. Chelation rate analysis showed that the Sr/dSIS-7 group had the highest strontium chelation rate, which was statistically different from the other groups (P < 0.05). The scaffolds in all the groups had good water absorption. The scaffolds in Sr/dSIS-5, -7 and -9 groups showed significantly improved mechanical properties compared with the control group (P < 0.05). The scaffolds in all the groups had good biocompatibility, and the Sr/dSIS-7 group showed the best proliferation of BMSCs.
CONCLUSION
When pH was 7, the Sr/dSIS scaffolds showed the highest strontium chelation rate and the best proliferation effect of BMSCs, which was the ideal pH value for the preparation of the Sr/dSIS scaffolds.
Tissue Scaffolds/chemistry*
;
Biocompatible Materials
;
Strontium/pharmacology*
;
Ions
;
Hydrogen-Ion Concentration
;
Tissue Engineering/methods*
;
Porosity
7.Applicatoin of chitosan-based hydrogel in oral tissue engineering.
Yujie WANG ; Jielin ZOU ; Mingxuan CAI ; Yifan WANG ; Jing MAO ; Xin SHI
Journal of Central South University(Medical Sciences) 2023;48(1):138-147
Pulpitis, periodontitis, jaw bone defect, and temporomandibular joint damage are common oral and maxillofacial diseases in clinic, but traditional treatments are unable to restore the structure and function of the injured tissues. Due to their good biocompatibility, biodegradability, antioxidant effect, anti-inflammatory activity, and broad-spectrum antimicrobial property, chitosan-based hydrogels have shown broad applicable prospects in the field of oral tissue engineering. Quaternization, carboxymethylation, and sulfonation are common chemical modification strategies to improve the physicochemical properties and biological functions of chitosan-based hydrogels, while the construction of hydrogel composite systems via carrying porous microspheres or nanoparticles can achieve local sequential delivery of diverse drugs or bioactive factors, laying a solid foundation for the well-organized regeneration of defective tissues. Chemical cross-linking is commonly employed to fabricate irreversible permanent chitosan gels, and physical cross-linking enables the formation of reversible gel networks. Representing suitable scaffold biomaterials, several chitosan-based hydrogels transplanted with stem cells, growth factors or exosomes have been used in an attempt to regenerate oral soft and hard tissues. Currently, remarkable advances have been made in promoting the regeneration of pulp-dentin complex, cementum-periodontium-alveolar bone complex, jaw bone, and cartilage. However, the clinical translation of chitosan-based hydrogels still encounters multiple challenges. In future, more in vivo clinical exploration under the conditions of oral complex microenvironments should be performed, and the combined application of chitosan-based hydrogels and a variety of bioactive factors, biomaterials, and state-of-the-art biotechnologies can be pursued in order to realize multifaceted complete regeneration of oral tissue.
Chitosan/chemistry*
;
Tissue Engineering
;
Hydrogels/chemistry*
;
Biocompatible Materials/chemistry*
;
Cartilage
;
Tissue Scaffolds/chemistry*
8.A cervical cancer tissue-derived decellularized extracellular matrix scaffold for cervical cancer tissue reconstruction in vitro.
Jianying MAO ; Wenjing YANG ; He GUO ; Ruili DONG ; Lifang REN ; Shubin LI
Journal of Southern Medical University 2023;43(2):157-165
OBJECTIVE:
The prepare decellularized extracellular matrix (ECM) scaffold materials derived from human cervical carcinoma tissues for 3D culture of cervical carcinoma cells.
METHODS:
Fresh human cervical carcinoma tissues were treated with sodium lauryl ether sulfate (SLES) solution to prepare decellularized ECM scaffolds. The scaffolds were examined for ECM microstructure and residual contents of key ECM components (collagen, glycosaminoglycan, and elastin) and genetic materials by pathological staining and biochemical content analysis. In vitro 3D culture models were established by injecting cultured cervical cancer cells into the prepared ECM scaffolds. The cells in the recellularized scaffolds were compared with those in a conventional 2D culture system for cell behaviors including migration, proliferation and epithelial-mesenchymal transition (EMT) wsing HE staining, immunohistochemical staining and molecular biological technology analysis. Resistance to 5-fluorouracil (5-Fu) of the cells in the two culture systems was tested by analyzing the cell apoptosis rates via flow cytometry.
RESULTS:
SLES treatment effectively removed cells and genetic materials from human cervical carcinoma tissues but well preserved the microenvironment structure and biological activity of ECM. Compared with the 2D culture system, the 3D culture models significantly promoted proliferation, migration, EMT and 5-Fu resistance of human cervical cancer cells.
CONCLUSION
The decellularized ECM scaffolds prepared using human cervical carcinoma tissues provide the basis for construction of in vitro 3D culture models for human cervical cancer cells.
Female
;
Humans
;
Decellularized Extracellular Matrix
;
Extracellular Matrix
;
Uterine Cervical Neoplasms
;
Tissue Scaffolds/chemistry*
;
Carcinoma
;
Fluorouracil/pharmacology*
;
Tissue Engineering
;
Tumor Microenvironment
9.Fibroblasts overpressing WNT2b cause impairment of intestinal mucosal barrier.
Shu Zhe XIAO ; Yan Ling CHENG ; Yun ZHU ; Rui TANG ; Jian Biao GU ; Lin LAN ; Zhi Hua HE ; Dan Qiong LIU ; Lan Lan GENG ; Yang CHENG ; Si Tang GONG
Journal of Southern Medical University 2023;43(2):206-212
OBJECTIVE:
To investigate the mechanism by which fibroblasts with high WNT2b expression causes intestinal mucosa barrier disruption and promote the progression of inflammatory bowel disease (IBD).
METHODS:
Caco-2 cells were treated with 20% fibroblast conditioned medium or co-cultured with fibroblasts highly expressing WNT2b, with the cells without treatment with the conditioned medium and cells co-cultured with wild-type fibroblasts as the control groups. The changes in barrier permeability of Caco-2 cells were assessed by measuring transmembrane resistance and Lucifer Yellow permeability. In Caco-2 cells co-cultured with WNT2b-overexpressing or control intestinal fibroblasts, nuclear entry of β-catenin was detected with immunofluorescence assay, and the expressions of tight junction proteins ZO-1 and E-cadherin were detected with Western blotting. In a C57 mouse model of dextran sulfate sodium (DSS)-induced IBD-like enteritis, the therapeutic effect of intraperitoneal injection of salinomycin (5 mg/kg, an inhibitor of WNT/β-catenin signaling pathway) was evaluated by observing the changes in intestinal inflammation and detecting the expressions of tight junction proteins.
RESULTS:
In the coculture system, WNT2b overexpression in the fibroblasts significantly promoted nuclear entry of β-catenin (P < 0.01) and decreased the expressions of tight junction proteins in Caco-2 cells; knockdown of FZD4 expression in Caco-2 cells obviously reversed this effect. In DSS-treated mice, salinomycin treatment significantly reduced intestinal inflammation and increased the expressions of tight junction proteins in the intestinal mucosa.
CONCLUSION
Intestinal fibroblasts overexpressing WNT2b causes impairment of intestinal mucosal barrier function and can be a potential target for treatment of IBD.
Humans
;
Mice
;
Animals
;
Caco-2 Cells
;
beta Catenin/metabolism*
;
Culture Media, Conditioned/pharmacology*
;
Tight Junctions/metabolism*
;
Intestinal Mucosa
;
Inflammatory Bowel Diseases
;
Tight Junction Proteins/metabolism*
;
Inflammation/metabolism*
;
Fibroblasts/metabolism*
;
Mice, Inbred C57BL
;
Glycoproteins/metabolism*
;
Wnt Proteins/pharmacology*
;
Frizzled Receptors/metabolism*
10.IGFBP-3 promotes cachexia-associated lipid loss by suppressing insulin-like growth factor/insulin signaling.
Xiaohui WANG ; Jia LI ; Wei ZHANG ; Feng WANG ; Yunzi WU ; Yulin GUO ; Dong WANG ; Xinfeng YU ; Ang LI ; Fei LI ; Yibin XIE
Chinese Medical Journal 2023;136(8):974-985
BACKGROUND:
Progressive lipid loss of adipose tissue is a major feature of cancer-associated cachexia. In addition to systemic immune/inflammatory effects in response to tumor progression, tumor-secreted cachectic ligands also play essential roles in tumor-induced lipid loss. However, the mechanisms of tumor-adipose tissue interaction in lipid homeostasis are not fully understood.
METHODS:
The yki -gut tumors were induced in fruit flies. Lipid metabolic assays were performed to investigate the lipolysis level of different types of insulin-like growth factor binding protein-3 (IGFBP-3) treated cells. Immunoblotting was used to display phenotypes of tumor cells and adipocytes. Quantitative polymerase chain reaction (qPCR) analysis was carried out to examine the gene expression levels such as Acc1 , Acly , and Fasn et al .
RESULTS:
In this study, it was revealed that tumor-derived IGFBP-3 was an important ligand directly causing lipid loss in matured adipocytes. IGFBP-3, which is highly expressed in cachectic tumor cells, antagonized insulin/IGF-like signaling (IIS) and impaired the balance between lipolysis and lipogenesis in 3T3-L1 adipocytes. Conditioned medium from cachectic tumor cells, such as Capan-1 and C26 cells, contained excessive IGFBP-3 that potently induced lipolysis in adipocytes. Notably, neutralization of IGFBP-3 by neutralizing antibody in the conditioned medium of cachectic tumor cells significantly alleviated the lipolytic effect and restored lipid storage in adipocytes. Furthermore, cachectic tumor cells were resistant to IGFBP-3 inhibition of IIS, ensuring their escape from IGFBP-3-associated growth suppression. Finally, cachectic tumor-derived ImpL2, the IGFBP-3 homolog, also impaired lipid homeostasis of host cells in an established cancer-cachexia model in Drosophila . Most importantly, IGFBP-3 was highly expressed in cancer tissues in pancreatic and colorectal cancer patients, especially higher in the sera of cachectic cancer patients than non-cachexia cancer patients.
CONCLUSION
Our study demonstrates that tumor-derived IGFBP-3 plays a critical role in cachexia-associated lipid loss and could be a biomarker for diagnosis of cachexia in cancer patients.
Humans
;
Insulin-Like Growth Factor Binding Protein 3/metabolism*
;
Culture Media, Conditioned/pharmacology*
;
Cachexia/pathology*
;
Gastrointestinal Neoplasms
;
Somatomedins/metabolism*
;
Insulins/metabolism*
;
Lipids

Result Analysis
Print
Save
E-mail