1.Effect of Danggui Buxuetang on PINK1/Parkin Signaling Pathway of Vascular Dementia Rats
Guifang QI ; Yue JIANG ; Yunxiang TAN ; Nanbu WANG ; Xinghua CHEN ; Ting WAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):15-24
ObjectiveTo investigate the potential mechanism of Danggui Buxuetang (DBT) in the treatment of vascular dementia (VAD). MethodsSixty male SD rats were randomly assigned to the sham-operated group, model group, DBT low-, medium-, and high-dose groups, and the donepezil group. Except for the sham-operated group, rats in all other groups underwent bilateral common carotid artery ligation. After successful modeling, DBT was administered at doses of 9.2, 18.4, 36.8 g·kg-1 for the low-, medium-, and high-dose groups, respectively, while the donepezil group received 3 mg·kg-1 donepezil solution by gavage once daily. After 4 consecutive weeks of drug treatment, rats underwent the Morris water maze test, novel object recognition test, Nissl staining to observe hippocampal neurons, and immunofluorescence staining to detect the expression of neuronal nuclear protein (NeuN) in the hippocampus. Western blot was used to assess the expression of PTEN-induced kinase 1 (PINK1), Parkin, microtubule-associated protein 1 light chain 3Ⅱ (LC3Ⅱ), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax). Transmission electron microscopy was used to observe hippocampal neuronal ultrastructure. Real-time PCR was used to detect the expression of NADPH oxidase subunits p22phox and p47phox in hippocampal tissues. The levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity were measured to evaluate oxidative stress levels. ResultsIn the Morris water maze test, escape latency changed significantly over time in all groups except the model group. Compared with the sham-operated group, the model group showed significantly prolonged escape latency (P<0.01). Compared with the model group, rats in the DBT groups and the donepezil group exhibited significantly shorter escape latency (P<0.05, P<0.01). The number of crossings over the original platform was significantly reduced in the model group compared with the sham-operated group (P<0.01), whereas rats in the DBT and donepezil groups showed significantly increased platform crossings compared with the model group (P<0.05, P<0.01). Compared with the sham-operated group, exploration time of new objects was significantly reduced in the model group (P<0.01). Compared with the model group, exploration time of new objects increased significantly in the medium- and high-dose DBT groups and the donepezil group (P<0.05, P<0.01), while no significant change was observed in the low-dose DBT group. Compared with the high-dose DBT group, rats in the donepezil group had significantly prolonged escape latency and reduced platform crossings and new-object exploration time (P<0.05). Nissl staining showed decreased density of healthy neurons in the CA1 and CA3 regions of the hippocampus in the model group, with loss of Nissl bodies and nuclear atrophy or disappearance. In the high-dose DBT group, neuronal density in CA1 and CA3 increased, with neurons arranged closely and displaying normal morphology. Immunofluorescence showed that compared with the sham-operated group, the hippocampal NeuN⁺ cell count in the VAD model group was significantly decreased(P<0.01), compared with the VAD model group, the hippocampal NeuN⁺ cell count in the high-dose DBT group was significantly increased(P<0.01). Compared with the sham-operated group, the expression of PINK1, Parkin, LC3Ⅱ, and Bax proteins was significantly increased(P<0.01), while the expression of Bcl-2 was significantly decreased in the VAD model group(P<0.01). Compared with the VAD model group, the high-dose DBT group showed significantly decreased expression of PINK1, Parkin, LC3Ⅱ, and Bax proteins(P<0.01)and significantly upregulated Bcl-2 expression(P<0.01). The medium-dose DBT group exhibited significantly reduced expression of Parkin, LC3Ⅱ, and Bax proteins(P<0.05,P<0.01) and significantly increased Bcl-2 expression(P<0.01), while no statistically significant differences were observed in the low-dose DBT group. Transmission electron microscopy showed mitochondrial pyknosis, thickened cristae, increased electron density, and the presence of mitochondrial autophagy in the model group. In contrast, hippocampal neurons in the high-dose DBT group contained abundant mitochondria with intact morphology, clear cristae, and uniform matrix. Compared with the sham-operated group, total antioxidant capacity, SOD activity, and GSH levels were significantly decreased, while MDA levels were significantly increased in the model group (P<0.01). Compared with the model group, total antioxidant capacity and antioxidant levels (SOD, GSH) increased significantly, and MDA decreased significantly in the medium- and high-dose DBT groups (P<0.01), while no significant changes were observed in the low-dose DBT group. Compared with the sham-operated group, mRNA expression of p22phox and p47phox was significantly increased in the model group (P<0.01). Compared with the model group, expression of p22phox and p47phox was significantly decreased in the DBT groups (P<0.05, P<0.01). ConclusionDBT may exert neuroprotective effects by regulating PINK1/Parkin-mediated mitochondrial autophagy, thereby improving learning and memory abilities and treating VAD.
2.Huanglian Jiedutang Improves Myelin Damage and Agitated Behavior in Vascular Dementia by Regulating Microglial Polarization via CD22/SHP-1/p-Akt Signaling Pathway
Chen CHEN ; Xiaoxia FENG ; Shiting LIANG ; Xinxian SHI ; Guang YANG ; Jing QIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):25-33
ObjectiveTo investigate the mechanisms by which Huanglian Jiedutang (HLJDT) modulates microglial (MG) phenotypes through the sialic acid-binding Ig-like lectin 2 (SIGLEC2/CD22)/Src-homology-2-domain-containing protein tyrosine phosphatase-1 (SHP-1)/phosphorylated protein kinase B (p-Akt) signaling pathway, thereby promoting myelin repair and alleviating agitation-like behaviors in vascular dementia (VAD). MethodsSixty C57BL/6J mice were randomly assigned to a sham (normal) group, model group, HLJDT low-, medium-, and high-dose groups (2.5, 5, and 10 g·kg-1·d-1), and a risperidone group (2 mg·kg-1·d-1), with 10 mice per group. VAD was induced by bilateral common carotid artery stenosis (BCAS). From day 42, mice received drug interventions for 2 weeks. Agitation-like behaviors were assessed using the resident-intruder test. After behavioral testing, ventrolateral part of the ventromedial hypothalamus (VMHvl) tissues were collected. Western blot was used to measure protein levels of myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), proteolipid protein (PLP), inducible nitric oxide synthase (iNOS), arginase-1 (Arg1), CD86, CD206, and CD22, SHP-1, and p-Akt. Immunofluorescence was used to evaluate myelin-associated glycoprotein (MAG) intensity and the proportion of iNOS+/ionized calcium-binding adapter molecule 1 (Iba1)+ cells. ELISA was used to detect tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β. ResultsCompared with the normal group, the model group exhibited markedly increased biting and aggressive behaviors and shortened attack latency (P<0.01). MOG, MBP, and PLP protein levels and MAG fluorescence intensity were significantly reduced (P<0.05, P<0.01). INOS and CD86 expression and TNF-α, IL-6, and IL-1β levels were significantly elevated (P<0.01). CD22 and SHP-1 expression increased significantly (P<0.01), whereas p-Akt expression decreased (P<0.01). Compared with the model group, the medium- and high-dose HLJDT groups and the risperidone group showed markedly reduced biting and aggression (P<0.05, P<0.01) and prolonged attack latency (P<0.01). MOG, MBP, and PLP levels and MAG fluorescence intensity were significantly increased (P<0.05, P<0.01). INOS, CD86, TNF-α, IL-6, and IL-1β levels decreased significantly (P<0.05, P<0.01). CD22 and SHP-1 expression decreased, while p-Akt expression increased significantly (P<0.05, P<0.01). ConclusionHLJDT may modulate CD22/SHP-1/p-Akt signaling in the VMHvl, promote the shift of MG toward an anti-inflammatory and phagocytic phenotype, enhance myelin repair, and improve agitation-like behaviors in VAD mice.
3.Molecular Crosstalk Mechanisms of Shoutai Wan and Juyuan Jian on Maternal-fetal Interface Subcellular Clusters in CBA/J×DBA/2 Recurrent Pregnancy Loss Model
Jingxin GAO ; Qiuping CHEN ; Xiaoyan ZHENG ; Pengfei ZENG ; Rui ZHOU ; Yancai TANG ; Qian ZENG ; Wenli GUO ; Jinzhu HUANG ; Weijun DING ; Linwen DENG ; Hang ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):70-87
ObjectiveTo systematically compare the differential regulation of the maternal-fetal interface cell lineages and communication networks in the CBA/J×DBA/2 mouse model of recurrent pregnancy loss (RPL) by the two classic therapeutic methods-tonifying the kidney to stabilize the fetus and invigorating the spleen to stabilize the fetus (Shoutai Wan, Juyuan Jian)-of traditional Chinese medicine (TCM) at the single-cell resolution and clarify their modern scientific connotations. MethodsFemale non-pregnant CBA/J mice were caged with male BALB/c (blank group) and DBA/2 (modeling group) mice separately. Pregnant mice in the modeling group were randomly grouped as follows: high/low-dose Shoutai Wan, high/low-dose Juyuan Jian, model (RPL), and positive control (dydrogesterone), with 10 mice in each group. Starting from the day after the detection of the vaginal plug, mice were administrated with drugs or an equal volume of normal saline by gavage for 10 consecutive days. After the intervention, the following indicators were measured. ① Macroscopic evaluation: general conditions, uterine wet weight, embryo loss rate, four coagulation parameters [prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and thrombin time (TT)], and peripheral blood estradiol (E2) and progesterone (Pg) levels. The decidua with embryos was stained with hematoxylin-eosin (HE) and evaluated by transmission electron microscopy (TEM). The expression of B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor (VEGF), angiotensin Ⅱ (AngⅡ), matrix metalloproteinase-2 (MMP-2), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), CXC chemokine ligand 12 (CXCL12), and microtubule-associated protein 1 light chain 3 homolog (LC3)Ⅰ/Ⅱ was quantified by Western blot. ② Mechanism analysis at the single-cell level: The decidua with embryos from the blank, model, high-dose Shoutai Wan, and high-dose Juyuan Jian groups (6 mice per group, with 3 single-cell samples per group, totaling 24 mice) were analyzed by the BD Rhapsody™ platform, and the whole-cell atlas was drawn by uniform manifold approximation and projection (UMAP) dimensionality reduction clustering combined with the single-cell mouse cell atlas (scMCA). The differentially expressed genes (DEGs) and cell interaction networks were analyzed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and CellChat, and the protein-protein interaction (PPI) map of subtype cells was constructed. The CytoTRACE pseudo-temporal analysis was performed to explore the developmental trajectories of core immune cells (natural killer cells, NK cells) from maternal and fetal sources. Results① Pathological and Western blot results indicated that compared with the blank group, the RPL group showed an increase in the embryo loss rate (P<0.01), down-regulated expression of Bcl-2, LIF, MMP-2, and Vegf in the decidua with embryos (P<0.05), up-regulated protein levels of CXCL-12, AngⅡ, and IL-6 (P<0.05), blocked angiogenesis, apoptosis-inflammation imbalance, and coagulation dysfunction. Both prescriptions dose-dependently reduced the abortion rate and restored the angiogenesis-inflammation balance, and Shoutai pill showed superior performance in restoring the E2 level to the Pg level (P<0.05). ② Single-cell transcriptome analysis indicated that compared with the blank group, the RPL group showed differences in multiple key cell populations such as decidual cells, trophoblast cells, endothelial cells, erythroblasts, NK cells, and macrophages at the maternal-fetal interface. Immunity and angiogenesis were the key links in RPL. Compared with the RPL group, high-dose Shoutai Wan reversed the changes of NK cells in the embryonic layer (upregulating the mRNA levels of 17 genes and downregulating the mRNA levels of 29 genes) and macrophages (upregulating the mRNA levels of 117 genes and downregulating the mRNA levels of 53 genes) through the regulation of gene expression. High-dose Shoutai pill regulated the immune cells to affect unfolded proteins, cell adhesion, and programmed cell death, thereby promoting decidualization and angiogenesis and modulating embryo-membrane development. High-dose Juyuan Jian regulated the key subgroups of NK cells (up-regulating the mRNA levels of 9 genes and down-regulating the mRNA levels of 17 genes) and macrophages (up-regulating the mRNA levels of 110 genes and down-regulating the mRNA levels of 81 genes), which affected decidual inflammation and apoptosis and intervened in glycolysis. ③ The pseudo-temporal analysis and communication network indicated that the communication frequency of the RPL group decreased. High-dose Shoutai Wan restored maternal-fetal tolerance through pathways such as NKG2D, CDH5, GDF, and FASLG. High-dose Juyuan Jian enhanced the IL-6/LIFR/JAK/signal transducer and activator of transcription 3 (STAT3) and desmosome/SEMA6/tumor necrosis factor-like weak inducer of apoptosis (TWEAK) signaling to improve endometrial receptivity. The RPL group showed an increased proportion of toxic dNK7, a decreased proportion of reparative dNK4, and blocked embryo fNK1. High-dose Shoutai Wan down-regulated dNK7 and up-regulated dNK4. High-dose Juyuan Jian inhibited the terminal differentiation of dNK7 and up-regulated LILRB1, thus restoring the balance of cytotoxicity and repair. ConclusionBoth the kidney-tonifying and spleen-invigorating methods are effective in treating RPL. NK and macrophages are the key immune cells in the interaction between the embryo and the membrane. The kidney-tonifying method (Shoutai Wan) has an advantage in regulating the phenotypes of unfolded protein, cell adhesion, and programmed cell death, and shows expression characteristics closer to the physiological state in the regulation of NKG2D and CDH5 signals. The spleen-invigorating method (Juyuan Jian) has an advantage in regulating epithelial-mesenchymal transition (EMT), angiogenesis, and glycolysis and shows higher communication intensity in the IL-6 and LIFR pathways.
4.Efficacy Connotation and Mechanisms of Shudi Qiangjin Pills Against Steroid-induced Osteonecrosis of Femoral Head Based on "Disease-Syndrome-Formula" Association Network
Zhijian CHEN ; Suya ZHANG ; Longlong DING ; Guixin ZHANG ; Bo LIU ; Baohong MI ; Yanqiong ZHANG ; Na LIN ; Weiheng CHEN ; Chunzhu GONG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):88-99
ObjectiveTo elucidate the efficacy connotation of Shudi Qiangjin pills (SQP) against liver and kidney deficiency in steroid-induced osteonecrosis of femoral head (SONFH) from the perspective of the "disease-syndrome-formula" association and to clarify the underlying mechanisms based on in vivo and in vitro experiment validation. MethodsThe chemical components and the corresponding putative targets of SQP were collected from the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP) v2.0, the Encyclopedia of Traditional Chinese Medicine (ETCM) v2.0, and HERB databases. The SONFH-related genes were identified based on the differential expression profiles of peripheral blood of patients with SONFH compared to the healthy volunteers, and the disease phenotype-related targets were collected from the TCMIP v2.0 database. Then, the interaction network of "SONFH-related genes and candidate targets of SQP" was constructed based on "gene-gene interaction information", and the major network targets were screened by calculating the topological characteristic values of the network followed by the functional mining according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the SoFDA database. After that, the SONFH rat model was prepared by lipopolysaccharide combined with methylprednisolone injection, and 2.5, 5, 7.5 g·kg-1 SQP (once per day, equivalent to 1, 2, and 3 times the clinical equivalent dose, respectively) or 7.3×10-3 g·kg-1 of alendronate sodium (ALS, once per week, equivalent to the clinical equivalent dose) was given for 8 weeks. The effect characteristics of SQP and ALS in the treatment of SONFH were evaluated by micro-computed tomography scanning, hematoxylin and eosin staining, alkaline phosphatase (ALP) staining, immunohistochemical staining, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)staining, and a comparative efficacy analysis was conducted with ALS. In addition, SONFH cell models were prepared by dexamethasone stimulation of osteoblasts, and the intervention was carried out with the medicated serum of SQP at the aforementioned three doses. Cell counting kit-8, ALP staining, ALP activity assay, alizarin red staining, and flow cytometry were employed to investigate the regulatory effect of SQP on osteoblasts. The expression levels of osteogenesis-related proteins and key factors of the target signaling axis were detected by quantitative real-time polymerase chain reaction and Western blot. ResultsThe network analysis results demonstrated that the candidate targets of SQP primarily exerted their therapeutic effects through key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt), lipid metabolism and atherosclerosis, prolactin, chemokines, and neurotrophic factors pathways. These pathways were significantly involved in critical biological processes such as muscle and bone metabolism and the regulation of the "neuro-endocrine-immune" network, thereby addressing both modern medical symptoms (e.g., delayed skeletal maturation and recurrent fractures) and traditional Chinese medicine (TCM) symptoms (e.g., fatigue, aversion to cold, cold limbs, and pain in the limbs and joints in patients with SONFH characterized by liver and kidney deficiency syndrome. Among these pathways, the PI3K/Akt signaling pathway exhibited the highest degree of enrichment. The in vivo experimental results demonstrated that starting from the 4th week after modeling, the modeling group exhibited a significant reduction in body weight compared to the control group (P<0.05). After six weeks of treatment, all dosage groups of SQP showed significantly higher body weights compared to the model group (P<0.01). Compared with the normal group, the model group exhibited significant decreases in bone mineral density (BMD), bone volume fraction (BV/TV), trabecular number (Tb.N), osteocalcin (OCN), alkaline phosphatase (ALP) levels in femoral head tissue, and serum bone-specific alkaline phosphatase (BALP) (P<0.01), along with significant increases in trabecular separation (Tb.Sp), empty lacunae rate in tissue, and apoptosis rate (P<0.01). In comparison to the model group, the SQP intervention groups showed significant improvements in BMD, BV/TV and Tb.N (P<0.01), significant reductions in Tb.Sp, empty lacunae rate and apoptosis rate (P<0.05), and significant increases in protein levels of OCN and ALP as well as BALP content (P<0.05). The in vitro experimental results revealed that all dosage groups of SQP medicated serum showed no toxic effects on osteoblast. Compared with the normal group, the model group displayed significant suppression of osteoblast proliferation activity, ALP activity, and calcified nodule formation rate (P<0.01), significant decreases in mRNA transcription levels of OCN and Runt-related transcription factor 2 (RUNX2) (P<0.01), significant reductions in protein content of osteopontin (OPN), typeⅠ collagen (ColⅠ)A1, B-cell lymphoma-2 (Bcl-2), PI3K, and phosphorylated (p)-Akt (P<0.01), and a significant increase in apoptosis rate (P<0.01). Compared with the model group, the SQP medicated serum intervention groups exhibited significant increases in proliferation activity, ALP activity, calcified nodule formation rate, mRNA transcription levels of OCN and RUNX2, and protein content of OPN, ColⅠA1, Bcl-2, PI3K, and p-Akt (P<0.05), along with a significant decrease in apoptosis rate (P<0.01). ConclusionSQP can effectively reduce the disease severity of SONFH with liver and kidney deficiency syndrome and improve bone microstructure, with the therapeutic effects exhibiting a dose-dependent manner. The mechanism may be related to its regulation of key processes such as muscle and bone metabolism and the correction of imbalances in the "neuro-endocrine-immune" network, thereby promoting osteoblast differentiation and inhibiting osteoblast apoptosis. The PI3K/Akt signaling axis is likely one of the key pathways through which this formula exerts its effects.
5.Clinical Efficacy and Mechanism of Bupi Qingfei Prescription in Treating Stable Bronchiectasis
Zi YANG ; Guangsen LI ; Bing WANG ; Bo XU ; Jianxin WANG ; Sheng CAO ; Xinyan CHEN ; Xia SHI ; Qing MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):162-169
ObjectiveTo explore the clinical efficacy and mechanism of Bupi Qingfei prescription (BPQF) in treating stable bronchiectasis in the patients with syndromes of lung-spleen Qi deficiency and phlegm-heat accumulation in the lungs. MethodsA randomized, double-blind, placebo-controlled trial was conducted. Patients were randomized into BPQF and placebo control (PC) groups. On the basis of conventional Western medicine treatment, the BPQF granules and placebo were respectively administered at 10 g each time, twice a day, for a course of 24 weeks. The TCM symptom scores, Quality of Life Questionnaire for Bronchiectasis (QOL-B) scores, lung function indicators, T lymphocyte subsets, level of inflammatory factors in the sputum, level of neutrophil elastase (NE) in the sputum, and occurrence of adverse reactions were observed before and after treatment in the two groups. ResultsA total of 64 patients completed the study, encompassing 32 in the BPQF group and 32 in the PC group. After treatment, the BPQF group showed decreased TCM symptom scores (P<0.01), increased QOL-B scores (P<0.01), and declined levels of tumor necrosis factor (TNF)-α and NE (P<0.05, P<0.01). The PC group showed decreased TCM symptom (except spleen deficiency) scores (P<0.01), increased the QOL-B health cognition and respiratory symptom domain scores (P<0.05, P<0.01), and a declined TNF-α level (P<0.01). Moreover, the BPQF group had lower TCM symptom (except chest tightness) scores (P<0.05, P<0.01), higher QOL-B (except treatment burden) scores (P<0.05, P<0.01), and lower levels of interleukin-6 and TNF-α (P<0.05) than the PC group. Neither group showed serious adverse reactions during the treatment process. ConclusionBPQF can ameliorate the clinical symptoms of stable bronchiectasis patients who have lung-spleen Qi deficiency or phlegm-heat accumulation in the lungs by regulating the immune balance and inhibiting airway inflammatory responses.
6.Comparison of Efficacy and Mechanism in Warming Yang and Dispersing Cold of Aconiti Radix Lateralis Praeparata Processed by ZHANG Zhongjing's Method and Pharmacopoeia Method
Mingjie JIAO ; Qian CHEN ; Shuyu YAN ; Yiyan SONG ; Jia ZHANG ; Fei LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):207-217
ObjectiveTo investigate the therapeutic effects and mechanism of decoctions from four kinds of processed products of Aconiti Radix Lateralis Praeparata(ARLP) in deficiency-cold syndrome. MethodsA total of 36 SD rats were randomly divided into the control group, model group, Shengfupian(SFP) group, Paofuzi(PFZ) group, Heishunpian(HSP) group and Paofupian(PFP) group with 6 rats in each group. Except for the control group, rats in other groups were administered hydrocortisone sodium succinate via intramuscular injection to induce a cold deficiency syndrome model. After 14 consecutive days, each ARLP decoction pieces was administered via continuous gastric lavage at a dose of 12 g·kg-1·d-1 for 7 d, while the control and model groups received an equivalent volume of physiological saline. After the end of administration, body weight, spleen weight and thymus weight were measured for calculating the spleen and thymus indexes. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology of adrenal tissue. The fully automatic biochemistry analyzer was used to measure the total cholesterol(TC), triglyceride(TG), lactic dehydrogenase(LDH) and lactate(LAC) levels in serum. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the contents of 17-hydroxycorticosteroid(17-OHCS), cortisol(CORT), triiodothyronine(T3), thyroxine(T4), thyrotropin(TSH), immunoglobulin(Ig) M, IgG, cyclic adenosine monophosphate(cAMP) and cyclic guanosine monophosphate(cGMP). Western blot was used to measure the protein expression levels of protein kinase A(PKA), cAMP response element-binding protein(CREB), silent information regulator 1(Sirt1) and peroxisome proliferator-activated receptor γ coactivator-1α(PGC-1α). And high performance liquid chromatography(HPLC) was used to determine the content of major alkaloids, followed by Pearson correlation analysis with pharmacodynamic indicators. ResultsAfter modeling, compare with the control group, the model rats exhibited symptoms such as lethargy and loose stools, mild abnormalities were observed in adrenal tissue structure, and both spleen and thymus indices were significantly reduced(P<0.01). Thyroid, adrenal and immune system functions were suppressed, with decreased serum cAMP level and significantly elevated cGMP level(P<0.01). Compared with the model group, the adrenal injury by hydrocortisone sodium succinate were repaired and the spleen index were increased significantly in all four ARLP groups(P<0.05, P<0.01). The thymus index in SFP and PFZ groups were increased significantly(P<0.05). The contents of T3, TSH, 17-OHCS and CORT were increased significantly in SFP and PFZ groups(P<0.05). In addition, the content of IgG in SFP, PFZ and PFP groups were increased significantly(P<0.01), while the content of IgM in PFZ and HSP groups were also increased significantly(P<0.05). Regarding the cyclic nucleotide system, PFZ significantly elevated cAMP level while reducing cGMP level(P<0.05), exhibiting the most pronounced effect among the four decoction pieces. For energy metabolism indicators, PFZ significantly improved abnormal markers including TC, TG, LDH, and LAC(P<0.05). HSP showed marked improvement effects on TG, LDH, and LAC(P<0.05). Both PFZ and SFP significantly elevated the expression levels of PKA, CREB, Sirt1, and PGC-1α proteins(P<0.01). Additionally, the diester alkaloids in ARLP showed a strong positive correlation with TG, IgG, and CORT, a strong negative correlation with LAC, a moderate positive correlation with T4, and moderate negative correlations with cAMP and spleen index. Monomeric alkaloids showed strong positive correlations with TG and IgG, strong negative correlations with LAC, moderate positive correlations with CORT and T4, and moderate negative correlations with cAMP and spleen index. However, the content of water-soluble alkaloids showed strong positive correlations with TC, LDH, 17-OHCS, T3, TSH, and thymus index, moderate positive correlations with cAMP, CORT, T4, and spleen index, and moderate negative correlation with cGMP. ConclusionAmong different processed ARLP decoction pieces, PFZ processed according to ZHANG Zhongjing's method exhibits the most potent warming and cold-dispelling effects. Its pharmacological actions are mediated through regulating the thyroid, adrenal, immune, cyclic nucleotide systems, and material-energy metabolism pathways. Among these, water-soluble alkaloids show strong or moderate correlations with more indicators of deficiency-cold syndrome and exhibit the highest content in PFZ. Therefore, PFZ processed according to ZHANG Zhongjing's method may exert its warming and cold-dispelling effects through water-soluble alkaloids.
7.Mechanism of Action of Guishenwan in Treatment of Ovarian Insufficiency Diseases: A Review
Yao CHEN ; Sainan TIAN ; Bin'an WANG ; Shengyu WANG ; Wen'e LIU ; Lei LEI ; Li TANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):317-324
Guishenwan (GSW), originating from Jingyue Quanshu (Zhang Jingyue's Complete Works), is a classic traditional Chinese medicine (TCM) formula with a history of over 400 years. Designed for kidney essence deficiency syndrome, it is clinically applied to treat diseases associated with essence-blood deficiency, such as ovarian insufficiency diseases in women, oligospermia-induced infertility in men, and lumbar disc herniation. Numerous studies have confirmed its significant efficacy and advantages in managing ovarian insufficiency diseases, including diminished ovarian reserve (DOR), premature ovarian insufficiency (POI), and premature ovarian failure (POF). According to recent literature, the therapeutic mechanisms of GSW in treating ovarian insufficiency diseases involve regulating the hypothalamic-pituitary-ovarian axis (HPOA) function, ameliorating reproductive endocrine disorders, improving ovarian function, modulating relevant signaling pathways, and exerting immunoregulatory and anti-inflammatory effects. A review of GSW in clinical treatment revealed that clinical applications of GSW, particularly in combination with Western medicine, not only alleviate symptoms but also compensate for the limitations of hormone replacement therapy, thereby reducing recurrence, minimizing adverse reactions, and enhancing safety. This review aims to provide a scientific basis for the rational clinical use of GSW in ovarian insufficiency diseases, offer innovative TCM strategies for developing novel ovarian-protective drugs, promote the integration of TCM and Western medicine in reproductive medicine, and ultimately contribute a Chinese approach to global management of ovarian insufficiency diseases.
8.Effect of miR-1246 on high glucose-induced retinal microvascular endothelial cells by regulating METTL3-mediated m6A modification
Milu ZHOU ; Lin CHEN ; Zuofang ZHAO ; Daqing WANG
International Eye Science 2026;26(1):7-15
AIM:To explore the effect of miR-1246 on high glucose-induced retinal microvascular endothelial cells(RMECs)injury by regulating methyltransferase like 3(METTL3)mediated sirtuin 1(SIRT1)N6-methyladenosine(m6A)modification.METHODS:Dual luciferase assay was used to detect miR-1246 regulation of METTL3 expression; RMECs cells were divided into control group, high glucose(HG)group, high glucose+knocking down control(HG+anti-miR-NC)group, high glucose+knocking down miR-1246 expression(HG+anti-miR-1246)group, high glucose+overexpression control(HG+NC)group, high glucose+overexpression METTL3(HG+METTL3)group, high glucose+overexpression miR-1246+control(HG+miR-1246+NC)group, and high glucose+overexpression miR-1246+METTL3(HG+miR-1246+METTL3)group. After induction of high glucose for 48 h, CCK-8 method was used to detect cell survival; Annexin V-FITC/PI method was used to detect cell apoptosis; Transwell experiment was used to detect cell migration and invasion; ELISA method was used to detect cell oxidative stress and inflammation levels; Colorimetric method was used to detect m6A methylation level in total RNA; MeRIP-qPCR method was used to detect SIRT1 m6A methylation level; Real-time quantitative PCR was used to detect miR-1246, METTL3, SIRT1 mRNA expression in cells; Western blot was used to detect METTL3, SIRT1 and endothelial mesenchymal transition(EndMT)markers protein expression in cells.RESULTS: The MiR-1246 regulated METTL3 expression. Compared with the control group, cell survival rate was decreased in the HG group, apoptosis rate was increased, and the number of migrating and invading cells were increased, lactate dehydrogenase(LDH)activity, tumor necrosis factor-α(TNF-α), and interleukin(IL)-6 levels in cell culture supernatant were increased, IL-10 level was decreased, malondialdehyde(MDA)level was increased, superoxide dismutase(SOD)activity was decreased, miR-1246 expression was increased, total RNA m6A level and SIRT1 m6A level were decreased, METTL3, SIRT1, cluster of differentiation 31(CD31)and vascular endothelial cadherin(VE-cadherin)expression were decreased, while Vimentin and Snail1 expression were increased(all P<0.05); compared with the HG+anti-miR-NC group, cell survival rate was increased in the HG+anti-miR-1246 group, apoptosis rate was decreased, and the number of migrating and invading cells were decreased, LDH activity, TNF-α, and IL-6 levels in cell culture supernatant were decreased, IL-10 level was increased, MDA level was decreased, SOD activity was increased, miR-1246 expression was decreased, total RNA m6A level and SIRT1 m6A level were increased, METTL3, SIRT1, CD31 and VE-cadherin expression were increased, while Vimentin and Snail1 expression were decreased(all P<0.05); compared with the HG+NC group, cell survival rate was increased in the HG+METTL3 group, apoptosis rate was decreased, and the number of migrating and invading cells were decreased, LDH activity, TNF-α, and IL-6 levels in cell culture supernatant were decreased, IL-10 level was increased, MDA level was decreased, SOD activity was increased, miR-1246 expression was decreased, total RNA m6A level and SIRT1 m6A level were increased, METTL3, SIRT1, CD31 and VE-cadherin expression were increased, while Vimentin and Snail1 expression were decreased(all P<0.05); compared with the HG+miR-1246+NC group, cell survival rate was increased in the HG+miR-1246+METTL3 group, apoptosis rate was decreased, and the number of migrating and invading cells were decreased, LDH activity, TNF-α, and IL-6 levels in cell culture supernatant were decreased, IL-10 level was increased, MDA level was decreased, SOD activity was increased, miR-1246 expression was decreased, total RNA m6A level and SIRT1 m6A level were increased, METTL3, SIRT1, CD31 and VE-cadherin expression were increased, while Vimentin and Snail1 expression were decreased(all P<0.05).CONCLUSION:The miR-1246 promotes high glucose-induced apoptosis, invasion and metastasis, oxidative stress, inflammatory response, and EndMT process in RMECs cells by regulating METTL3 mediated SIRT1 m6A modification.
9.Study on the effect of apoptosis stimulation protein 2 on traumatic proliferative vitreoretinopathy in rabbits
Xiaoli CHEN ; Yuze MAO ; Wenhui CAI ; Haiwei WANG ; Yankun YUE
International Eye Science 2026;26(1):16-20
AIM:To investigate the effect of apoptosis stimulation protein 2(ASPP2)on the development of traumatic proliferative vitreoretinopathy(PVR)in a rabbit model.METHODS:A total of 30 New Zealand white rabbits were selected, and the right eyes of all rabbits were inflicted with a scleral penetrating wound of approximately 6 mm. Then rabbits were randomly and evenly divided into experimental and control group. The experimental group received an intravitreal injection of 0.1 mL of ARPE-19 cell suspension transfected with lentivirus-ASPP2, while the control group received an intravitreal injection of 0.1 mL of ARPE-19 cell suspension transfected with negative control lentivirus. At 1, 2, 3, and 4 wk after PVR modeling, a handheld tonometer was used to measure the intraocular pressure. Moreover, fundus photography and ocular ultrasound examination were performed to detect the retinal proliferation. At 4 wk after modeling, hematoxylin-eosin staining was used to observe the morphological retinal changes, and Western blot was used to determine the protein expressions of ASPP2 and the epithelial-mesenchymal transition(EMT)marker Vimentin in the rabbit retinas.RESULTS:At 1, 2, 3, and 4 wk after modeling, there were no significant changes in intraocular pressure within the experimental and control group of rabbit eyes, either before or after PVR modeling, the success rate of PVR modeling in the experimental group was lower than that in the control group(P<0.05), and the retinal proliferation and structural disorder was less severe in the experimental group. At 4 wk after modeling, the retinal protein expression level of ASPP2 in the experimental group was significantly higher than that in the control group(t=3.193, P=0.033), while the Vimentin protein expression level was significantly lower in the experimental group(t=-3.599, P=0.023).CONCLUSION:ASPP2 may be involved in regulating the process of EMT in retinal pigment epithelial cells, thereby delaying the development and progression of traumatic PVR in rabbit eyes.
10.Influence of pterygium thickness and area on corneal refractive status
Xiaodong CHENG ; Jie WANG ; Song GAO ; Yanhong LU ; Yanbo MA ; Xinming CUI ; Xihui CHEN
International Eye Science 2026;26(1):152-156
AIM: To investigate the influence of pterygium thickness and area on corneal refractive status.METHODS: Prospective longitudinal study. A total of 60 cases(60 eyes)of pterygium patients admitted to our hospital from January 2024 to September 2024 were randomly selected. All patients underwent pterygium excision combined with pedicle conjunctival flap transplantation for treatment. Optical coherence tomography(OCT)was used to measure the preoperative thickness of patient's pterygium, and a digital slit lamp microscope was used to measure the area of pterygium. The corneal refractive status(degree of corneal astigmatism and average curvature)and changes in uncorrected visual acuity of patients before surgery, 1 d, 1, and 3 mo after surgery were compared. The relationship between preoperative thickness and area of pterygium in patients and corneal refractive status indicators at different postoperative time points were analyzed, and Logistic regression was used to analyze the impact of pterygium thickness and area on postoperative visual improvement in patients.RESULTS: All patients completed follow-up after surgery for 3 mo. At 3 mo after surgery, visual acuity improved in 21 eyes(35%). The results of bivariate Pearson correlation analysis showed that the thickness and area of pterygium positively correlated with the degree of corneal astigmatism and uncorrected visual acuity before surgery and 1 d, 1, and 3 mo after surgery(all P<0.05), and negatively correlated with the average corneal curvature before surgery and 1 d, 1, and 3 mo after surgery(all P<0.05). Logistic regression analysis showed that the thickness and area of pterygium before surgery, high degree of corneal astigmatism, and low uncorrected visual acuity(large LogMAR value)were all risk factors for poor postoperative visual improvement in patients(OR>1, P<0.05). The large average corneal curvature before surgery was a protective factor for poor postoperative visual improvement in patients(OR<1, P<0.05).CONCLUSION: The increase in thickness and area of pterygium can, to some extent, improve corneal astigmatism, reduce the average curvature of the cornea, and affect postoperative visual recovery.

Result Analysis
Print
Save
E-mail