1.Expression of GPNMB in renal eosinophilic tumors and its value in differential diagnosis.
Ya WANG ; Meng Yue HOU ; Yao FU ; Kui MENG ; Hong Yan WU ; Jin CHEN ; Yue Mei XU ; Jiong SHI ; Xiang Shan FAN
Chinese Journal of Pathology 2023;52(4):358-363
Objective: To investigate the expression of glycoprotein non metastatic melanoma protein B (GPNMB) in renal eosinophilic tumors and to compare the value of GPNMB with CK20, CK7 and CD117 in the differential diagnosis of renal eosinophilic tumors. Methods: Traditional renal tumor eosinophil subtypes, including 22 cases of renal clear cell carcinoma eosinophil subtype (e-ccRCC), 19 cases of renal papillary cell carcinoma eosinophil subtype (e-papRCC), 17 cases of renal chromophobe cell carcinoma eosinophil subtype (e-chRCC), 12 cases of renal oncocytoma (RO) and emerging renal tumor types with eosinophil characteristics [3 cases of eosinophilic solid cystic renal cell carcinoma (ESC RCC), 3 cases of renal low-grade eosinophil tumor (LOT), 4 cases of fumarate hydratase-deficient renal cell carcinoma (FH-dRCC) and 5 cases of renal epithelioid angiomyolipoma (E-AML)], were collected at the Affiliated Drum Tower Hospital of Nanjing University Medical School from January 2017 to March 2022. The expression of GPNMB, CK20, CK7 and CD117 was detected by immunohistochemistry and statistically analyzed. Results: GPNMB was expressed in all emerging renal tumor types with eosinophil characteristics (ESC RCC, LOT, FH-dRCC) and E-AML, while the expression rates in traditional renal eosinophil subtypes e-papRCC, e-chRCC, e-ccRCC and RO were very low or zero (1/19, 1/17, 0/22 and 0/12, respectively); the expression rate of CK7 in LOT (3/3), e-chRCC (15/17), e-ccRCC (4/22), e-papRCC (2/19), ESC RCC (0/3), RO (4/12), E-AML(1/5), and FH-dRCC (2/4) variedly; the expression of CK20 was different in ESC RCC (3/3), LOT(3/3), e-chRCC(1/17), RO(9/12), e-papRCC(4/19), FH-dRCC(1/4), e-ccRCC(0/22) and E-AML(0/5), and so did that of CD117 in e-ccRCC(2/22), e-papRCC(1/19), e-chRCC(16/17), RO(10/12), ESC RCC(0/3), LOT(1/3), E-AML(2/5) and FH-dRCC(1/4). GPNMB had 100% sensitivity and 97.1% specificity in distinguishing E-AML and emerging renal tumor types (such as ESC RCC, LOT, FH-dRCC) from traditional renal tumor types (such as e-ccRCC, e-papRCC, e-chRCC, RO),respectively. Compared with CK7, CK20 and CD117 antibodies, GPNMB was more effective in the differential diagnosis (P<0.05). Conclusion: As a new renal tumor marker, GPNMB can effectively distinguish E-AML and emerging renal tumor types with eosinophil characteristics such as ESC RCC, LOT, FH-dRCC from traditional renal tumor eosinophil subtypes such as e-ccRCC, e-papRCC, e-chRCC and RO, which is helpful for the differential diagnosis of renal eosinophilic tumors.
Humans
;
Kidney Neoplasms/pathology*
;
Carcinoma, Renal Cell/pathology*
;
Diagnosis, Differential
;
Angiomyolipoma/diagnosis*
;
Biomarkers, Tumor/metabolism*
;
Leukemia, Myeloid, Acute/diagnosis*
;
Membrane Glycoproteins
2.Silenced ANP32A inhibits the growth, invasion and migration of colorectal cancer in vitro via the inactivation of AKT pathway.
Hong Fang DING ; Xiao Juan LI ; Lu Wei ZHOU ; Zhi CUI ; Hai De MENG ; Juan WANG
Journal of Southern Medical University 2023;43(1):52-59
OBJECTIVE:
To investigate the effect of ANP32A silencing on invasion and migration of colon cancer cells and the influence of the activity of AKT signaling pathway on this effect.
METHODS:
Colorectal cancer HCT116 and SW480 were transfected with a small interfering RNA targeting ANP32A via a lentiviral vector. At 24, 48 and 72 h after the transfection, the changes in cell proliferation and AKT activity in the cells were detected using MTT assay and Western blotting, respectively. HCT116 and SW480 cells were treated with the AKT agonist SC79 or its inhibitor MK2206 for 24, 48, 72 and 96 h, and the changes in cell migration and invasion ability were analyzed using Transwell chamber assay and cell proliferation was assessed using MTT assay. The effects of SC79 and MK2206 on migration and invasion abilities of HCT116 and SW480 cells with or without ANP32A silencing were examined using wound healing and Transwell chamber assays, and the changes in the expression of metadherin (MTDH), a factor associated with cells invasion and migration, was detected with Western blotting.
RESULTS:
Lentivirus-mediated ANP32A silencing significantly down-regulated the activity of AKT and inhibited the proliferation of both HCT116 and SW480 cells (P < 0.01). The application of AKT inhibitor MK2206 obviously inhibited the proliferation, invasion and migration of the colorectal cancer cells (P < 0.05), while the AKT agonist SC79 significantly promoted the invasion and migration of the cells (P < 0.01). In HCT116 and SW480 cells with ANP32A silencing, treatment with MK2206 strongly enhanced the inhibitory effects of ANP32A silencing on cell invasion and migration (P < 0.05) and the expression of MTDH, while SC79 partially reversed these inhibitory effects (P < 0.01).
CONCLUSION
ANP32A silencing inhibits invasion and migration of colorectal cancer cells possibly by inhibiting the activation of the AKT signaling pathway.
Humans
;
Proto-Oncogene Proteins c-akt
;
Cell Proliferation
;
Blotting, Western
;
Cell Movement
;
Colonic Neoplasms
;
Membrane Proteins
;
RNA-Binding Proteins/genetics*
;
Nuclear Proteins
3.LASS2/TMSG1 overexpression inhibits proliferation and promotes apoptosis of human lung cancer A549 cells possibly by upregulating ceramide and p38 MAPK to activate a signaling cascade.
Zheng Lu LIU ; Cheng Rui XUAN ; Xi Ran HAN ; Ze Ze ZHENG ; Rui XIAO ; Lu Ri BAO ; Xiao Yan XU
Journal of Southern Medical University 2023;43(2):166-174
OBJECTIVE:
To investigate the effects of LASS2/TMSG1 gene overexpression on proliferation and apoptosis of human lung cancer A549 cells and explore the possible mechanism.
METHODS:
We examined LASS2/TMSG1 expression level in a previously constructed A549 cell line overexpressing LASS2/TMSG1 using Western blotting. The proliferation and apoptosis of the cells were detected using colony-forming assay, CCK-8 assay, Hoechst/PI double staining and flow cytometry. Fourteen nude mice were randomized into 2 groups (n=7) to receive subcutaneous injection of A549 cells with or without LASS2/TMSG1 overexpression on the back of the neck, and the cell proliferation in vivo was observed. The expression levels of p38 MAPK protein and p-p38 MAPK protein in the xenografts were detected with Western blotting. ELISA was used to detect the levels of ceramide and p38 MAPK protein in cultured A549 cell supernatants and the xenografts in nude mice.
RESULTS:
Compared with the negative control cells, A549 cells with LASS2/TMSG1 overexpression had significantly lowered proliferation ability in vitro with increased early apoptosis rate (P < 0.05), and showed obvious growth inhibition after inoculation in nude mice(P < 0.05). Western blotting showed that in both cultured A549 cells and the xenografts in nude mice, LASS2/TMSG1 gene overexpression significantly increased the expression levels of p38 MAPK protein and p-p38 MAPK protein (P < 0.05); the results of ELISA also revealed significantly increased levels of ceramide and p38 MAPK protein in the cell supernatant andxenografts as well (P < 0.05).
CONCLUSION
Overexpression of LASS2/TMSG1 gene can significantly inhibit the proliferation and promote early apoptosis of human lung cancer A549 cells both in vitro and in vivo possibly by upregulating the expressions of ceramide and p38 MAPK protein to activate a signal transduction cascade.
Animals
;
Humans
;
Mice
;
A549 Cells
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Lung Neoplasms
;
Membrane Proteins/metabolism*
;
Mice, Nude
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Signal Transduction
;
Tumor Suppressor Proteins/metabolism*
4.Lnc-TMEM132D-AS1 overexpression reduces sensitivity of non-small cell lung cancer cells to osimertinib.
Qi Lin ZHAO ; Nan WANG ; Ya Wen LI ; Qing Tan WU ; Lan Xiang WU
Journal of Southern Medical University 2023;43(2):242-250
OBJECTIVE:
To screen the differentially expressed long non-coding RNAs (lncRNAs) in non-small cell lung cancer (NSCLC) cells with acquired resistance to osimertinib and explore their roles in drug resistance of the cells.
METHODS:
The cell lines H1975_OR and HCC827_OR with acquired osimertinib resistance were derived from their osimertinib-sensitive parental NSCLC cell lines H1975 and HCC827, respectively, and their sensitivity to osimertinib was assessed with CCK-8 assay, clone formation assay and flow cytometry. RNA sequencing (RNA-seq) and real-time quantitative PCR (qPCR) were used to screen the differentially expressed lncRNAs in osimertinib-resistant cells. The role of the identified lncRNA in osimertinib resistance was explored using CCK-8, clone formation and Transwell assays, and its subcellular localization and downstream targets were analyzed by nucleoplasmic separation, bioinformatics analysis and qPCR.
RESULTS:
The resistance index of H1975_OR and HCC827_OR cells to osimertinib was 598.70 and 428.82, respectively (P < 0.001), and the two cell lines showed significantly increased proliferation and colony-forming abilities with decreased apoptosis (P < 0.01). RNA-seq identified 34 differentially expressed lncRNAs in osimertinib-resistant cells, and among them lnc-TMEM132D-AS1 showed the highest increase of expression after acquired osimertinib resistance (P < 0.01). Analysis of the TCGA database suggested that the level of lnc-TMEM132D-AS1 was significantly higher in NSCLC than in adjacent tissues (P < 0.001), and its high expression was associated with a poor prognosis of the patients. In osimertinib-sensitive cells, overexpression of Lnc-TMEM132D-AS1 obviously promoted cell proliferation, colony formation and migration (P < 0.05), while Lnc-TMEM132D-AS1 knockdown partially restored osimertinib sensitivity of the resistant cells (P < 0.01). Lnc-TMEM132D-AS1 was localized mainly in the cytoplasm, and bioinformatics analysis suggested that hsa-miR-766-5p was its candidate target, and their expression levels were inversely correlated. The target mRNAs of hsa-miR-766-5p were mainly enriched in the Ras signaling pathway.
CONCLUSION
The expression of lnc-TMEM132D-AS1 is significantly upregulated in NSCLC cells with acquired osimertinib resistance, and may serve as a potential biomarker and therapeutic target for osimertinibresistant NSCLC.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Lung Neoplasms/genetics*
;
RNA, Long Noncoding/metabolism*
;
Sincalide/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Movement
;
MicroRNAs/genetics*
;
Gene Expression Regulation, Neoplastic
;
Membrane Proteins/metabolism*
5.Bi-directional Control of Synaptic Input Summation and Spike Generation by GABAergic Inputs at the Axon Initial Segment.
Ziwei SHANG ; Junhao HUANG ; Nan LIU ; Xiaohui ZHANG
Neuroscience Bulletin 2023;39(1):1-13
Differing from other subtypes of inhibitory interneuron, chandelier or axo-axonic cells form depolarizing GABAergic synapses exclusively onto the axon initial segment (AIS) of targeted pyramidal cells (PCs). However, the debate whether these AIS-GABAergic inputs produce excitation or inhibition in neuronal processing is not resolved. Using realistic NEURON modeling and electrophysiological recording of cortical layer-5 PCs, we quantitatively demonstrate that the onset-timing of AIS-GABAergic input, relative to dendritic excitatory glutamatergic inputs, determines its bi-directional regulation of the efficacy of synaptic integration and spike generation in a PC. More specifically, AIS-GABAergic inputs promote the boosting effect of voltage-activated Na+ channels on summed synaptic excitation when they precede glutamatergic inputs by >15 ms, while for nearly concurrent excitatory inputs, they primarily produce a shunting inhibition at the AIS. Thus, our findings offer an integrative mechanism by which AIS-targeting interneurons exert sophisticated regulation of the input-output function in targeted PCs.
Axon Initial Segment
;
Axons/physiology*
;
Neurons
;
Synapses/physiology*
;
Pyramidal Cells/physiology*
;
Interneurons/physiology*
;
Action Potentials/physiology*
6.Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis.
Hao SUN ; Xuan XU ; Junyu LUO ; Tingbin MA ; Jiaming CUI ; Mugen LIU ; Bo XIONG ; Shujia ZHU ; Jing-Yu LIU
Neuroscience Bulletin 2023;39(1):57-68
PiT2 is an inorganic phosphate (Pi) transporter whose mutations are linked to primary familial brain calcification (PFBC). PiT2 mainly consists of two ProDom (PD) domains and a large intracellular loop region (loop7). The PD domains are crucial for the Pi transport, but the role of PiT2-loop7 remains unclear. In PFBC patients, mutations in PiT2-loop7 are mainly nonsense or frameshift mutations that probably cause PFBC due to C-PD1131 deletion. To date, six missense mutations have been identified in PiT2-loop7; however, the mechanisms by which these mutations cause PFBC are poorly understood. Here, we found that the p.T390A and p.S434W mutations in PiT2-loop7 decreased the Pi transport activity and cell surface levels of PiT2. Furthermore, we showed that these two mutations attenuated its membrane localization by affecting adenosine monophosphate-activated protein kinase (AMPK)- or protein kinase B (AKT)-mediated PiT2 phosphorylation. In contrast, the p.S121C and p.S601W mutations in the PD domains did not affect PiT2 phosphorylation but rather impaired its substrate-binding abilities. These results suggested that missense mutations in PiT2-loop7 can cause Pi dyshomeostasis by affecting the phosphorylation-regulated cell-surface localization of PiT2. This study helps understand the pathogenesis of PFBC caused by PiT2-loop7 missense mutations and indicates that increasing the phosphorylation levels of PiT2-loop7 could be a promising strategy for developing PFBC therapies.
Humans
;
Cell Membrane
;
Mutation, Missense
;
Phosphates/metabolism*
;
Sodium-Phosphate Cotransporter Proteins, Type III/genetics*
7.NDFIP1 limits cellular TAZ accumulation via exosomal sorting to inhibit NSCLC proliferation.
Yirui CHENG ; Xin LU ; Fan LI ; Zhuo CHEN ; Yanshuang ZHANG ; Qing HAN ; Qingyu ZENG ; Tingyu WU ; Ziming LI ; Shun LU ; Cecilia WILLIAMS ; Weiliang XIA
Protein & Cell 2023;14(2):123-136
NDFIP1 has been previously reported as a tumor suppressor in multiple solid tumors, but the function of NDFIP1 in NSCLC and the underlying mechanism are still unknown. Besides, the WW domain containing proteins can be recognized by NDFIP1, resulted in the loading of the target proteins into exosomes. However, whether WW domain-containing transcription regulator 1 (WWTR1, also known as TAZ) can be packaged into exosomes by NDFIP1 and if so, whether the release of this oncogenic protein via exosomes has an effect on tumor development has not been investigated to any extent. Here, we first found that NDFIP1 was low expressed in NSCLC samples and cell lines, which is associated with shorter OS. Then, we confirmed the interaction between TAZ and NDFIP1, and the existence of TAZ in exosomes, which requires NDFIP1. Critically, knockout of NDFIP1 led to TAZ accumulation with no change in its mRNA level and degradation rate. And the cellular TAZ level could be altered by exosome secretion. Furthermore, NDFIP1 inhibited proliferation in vitro and in vivo, and silencing TAZ eliminated the increase of proliferation caused by NDFIP1 knockout. Moreover, TAZ was negatively correlated with NDFIP1 in subcutaneous xenograft model and clinical samples, and the serum exosomal TAZ level was lower in NSCLC patients. In summary, our data uncover a new tumor suppressor, NDFIP1 in NSCLC, and a new exosome-related regulatory mechanism of TAZ.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Carrier Proteins/metabolism*
;
Cell Line
;
Cell Proliferation
;
Exosomes/metabolism*
;
Lung Neoplasms/genetics*
;
Membrane Proteins/metabolism*
;
Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism*
8.Reverse effect of Semaphorin-3F on rituximab resistance in diffuse large B-cell lymphoma via the Hippo pathway.
Qiong LI ; Naya MA ; Xinlei LI ; Chao YANG ; Wei ZHANG ; Jingkang XIONG ; Lidan ZHU ; Jiali LI ; Qin WEN ; Lei GAO ; Cheng YANG ; Lingyi RAO ; Li GAO ; Xi ZHANG ; Jun RAO
Chinese Medical Journal 2023;136(12):1448-1458
BACKGROUND:
Exploring the underlying mechanism of rituximab resistance is critical to improve the outcomes of patients with diffuse large B-cell lymphoma (DLBCL). Here, we tried to identify the effects of the axon guidance factor semaphorin-3F (SEMA3F) on rituximab resistance as well as its therapeutic value in DLBCL.
METHODS:
The effects of SEMA3F on the treatment response to rituximab were investigated by gain- or loss-of-function experiments. The role of the Hippo pathway in SEMA3F-mediated activity was explored. A xenograft mouse model generated by SEMA3F knockdown in cells was used to evaluate rituximab sensitivity and combined therapeutic effects. The prognostic value of SEMA3F and TAZ (WW domain-containing transcription regulator protein 1) was examined in the Gene Expression Omnibus (GEO) database and human DLBCL specimens.
RESULTS:
We found that loss of SEMA3F was related to a poor prognosis in patients who received rituximab-based immunochemotherapy instead of chemotherapy regimen. Knockdown of SEMA3F significantly repressed the expression of CD20 and reduced the proapoptotic activity and complement-dependent cytotoxicity (CDC) activity induced by rituximab. We further demonstrated that the Hippo pathway was involved in the SEMA3F-mediated regulation of CD20. Knockdown of SEMA3F expression induced the nuclear accumulation of TAZ and inhibited CD20 transcriptional levels via direct binding of the transcription factor TEAD2 and the CD20 promoter. Moreover, in patients with DLBCL, SEMA3F expression was negatively correlated with TAZ, and patients with SEMA3F low TAZ high had a limited benefit from a rituximab-based strategy. Specifically, treatment of DLBCL cells with rituximab and a YAP/TAZ inhibitor showed promising therapeutic effects in vitro and in vivo .
CONCLUSION
Our study thus defined a previously unknown mechanism of SEMA3F-mediated rituximab resistance through TAZ activation in DLBCL and identified potential therapeutic targets in patients.
Humans
;
Animals
;
Mice
;
Rituximab/therapeutic use*
;
Hippo Signaling Pathway
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Prognosis
;
Semaphorins/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Membrane Proteins/genetics*
;
Nerve Tissue Proteins/genetics*
9.Functional analysis of functional membrane microdomains in the biosynthesis of menaquinone-7.
Yajun DONG ; Shixiu CUI ; Yanfeng LIU ; Jianghua LI ; Guocheng DU ; Xueqin LÜ ; Long LIU
Chinese Journal of Biotechnology 2023;39(6):2215-2230
Functional membrane microdomains (FMMs) that are mainly composed of scaffold proteins and polyisoprenoids play important roles in diverse cellular physiological processes in bacteria. The aim of this study was to identify the correlation between MK-7 and FMMs and then regulate the MK-7 biosynthesis through FMMs. Firstly, the relationship between FMMs and MK-7 on the cell membrane was determined by fluorescent labeling. Secondly, we demonstrated that MK-7 is a key polyisoprenoid component of FMMs by analyzing the changes in the content of MK-7 on cell membrane and the changes in the membrane order before and after destroying the integrity of FMMs. Subsequently, the subcellular localization of some key enzymes in MK-7 synthesis was explored by visual analysis, and the intracellular free pathway enzymes Fni, IspA, HepT and YuxO were localized to FMMs through FloA to achieve the compartmentalization of MK-7 synthesis pathway. Finally, a high MK-7 production strain BS3AT was successfully obtained. The production of MK-7 reached 300.3 mg/L in shake flask and 464.2 mg/L in 3 L fermenter.
Bacillus subtilis/metabolism*
;
Vitamin K 2/metabolism*
;
Bioreactors/microbiology*
;
Membrane Microdomains/metabolism*
10.Effect of the chicken zp1 gene on osteoblast mineralization.
Qiaoxian YUE ; Chenxuan HUANG ; Yinliang ZHANG ; Hui CHEN ; Rongyan ZHOU
Chinese Journal of Biotechnology 2023;39(7):2684-2694
The aim of this study was to clone the chicken zp1 gene encoding zona pellucida 1 (Zp1) and investigate its tissues expression profile and its effect on osteoblast mineralization. The expression level of zp1 was quantified in various tissues of laying hens and in the tibia of the pre- and post-sexual maturity by RT-qPCR. Zp1 overexpressed vector was transfected into chicken calvarial osteoblasts which were induced differentiation for 8 days, and the extracellular mineral and the expression of mineralization-related genes were detected. The full-length chicken zp1 gene is 3 045 bp, encoding 958 amino acids residuals, and has two N-glycosylation sites. The highest expression level of the zp1 gene was found in the liver, followed by the tibia and yolk membrane, while no expression was detected in the heart and eggshell gland. Compared with the pre-sexual maturity hens, the concentration of estrogen (E2) in plasma, the content of glycosaminoglycan (GAG) and the expression level of the zp1 gene in the tibia with post-sexual maturity were higher. The extracellular matrix and the level of osteoblast mineralization-related genes showed a significantly upregulated expression in chicken calvarial osteoblasts with Zp1 overexpressed and addition of estrogen. The expression of the zp1 gene is tissue-specific and positively regulated osteoblast mineralization under the action of estrogen, laying the foundation for elucidating the functional properties of Zp1 in chicken bones during the egg production period.
Female
;
Animals
;
Zona Pellucida Glycoproteins
;
Membrane Glycoproteins/metabolism*
;
Chickens/genetics*
;
Egg Proteins/metabolism*
;
Receptors, Cell Surface
;
Estrogens

Result Analysis
Print
Save
E-mail