1.Perspective of Calcium Imaging Technology Applied to Acupuncture Research.
Sha LI ; Yun LIU ; Nan ZHANG ; Wang LI ; Wen-Jie XU ; Yi-Qian XU ; Yi-Yuan CHEN ; Xiang CUI ; Bing ZHU ; Xin-Yan GAO
Chinese journal of integrative medicine 2024;30(1):3-9
Acupuncture, a therapeutic treatment defined as the insertion of needles into the body at specific points (ie, acupoints), has growing in popularity world-wide to treat various diseases effectively, especially acute and chronic pain. In parallel, interest in the physiological mechanisms underlying acupuncture analgesia, particularly the neural mechanisms have been increasing. Over the past decades, our understanding of how the central nervous system and peripheral nervous system process signals induced by acupuncture has developed rapidly by using electrophysiological methods. However, with the development of neuroscience, electrophysiology is being challenged by calcium imaging in view field, neuron population and visualization in vivo. Owing to the outstanding spatial resolution, the novel imaging approaches provide opportunities to enrich our knowledge about the neurophysiological mechanisms of acupuncture analgesia at subcellular, cellular, and circuit levels in combination with new labeling, genetic and circuit tracing techniques. Therefore, this review will introduce the principle and the method of calcium imaging applied to acupuncture research. We will also review the current findings in pain research using calcium imaging from in vitro to in vivo experiments and discuss the potential methodological considerations in studying acupuncture analgesia.
Calcium
;
Acupuncture Therapy
;
Acupuncture
;
Acupuncture Analgesia/methods*
;
Acupuncture Points
;
Technology
2.Chemoprevention of colorectal cancer in general population and high-risk population: a systematic review and network meta-analysis.
Ye MA ; Wen YOU ; Yang CAO ; Xuxia HE ; Jing WANG ; Yuelun ZHANG ; Ji LI ; Jingnan LI
Chinese Medical Journal 2023;136(7):788-798
BACKGROUND:
Many nutritional supplements and pharmacological agents have been reported to show preventive effects on colorectal adenoma and colorectal cancer (CRC). We performed a network meta-analysis to summarize such evidence and assess the efficacy and safety of these agents.
METHODS:
We searched PubMed, Embase, and the Cochrane Library for studies published in English until October 31, 2021 that fit our inclusion criteria. We performed a systematic review and network meta-analysis to assess the comparative efficacy and safety of candidate agents (low-dose aspirin [Asp], high-dose Asp, cyclooxygenase-2 inhibitors [coxibs], calcium, vitamin D, folic acid, ursodeoxycholic acid [UDCA], estrogen, and progesterone, alone or in combination) for preventing colorectal adenoma and CRC. Cochrane risk-of-bias assessment tool was employed to evaluate the quality of each included study.
RESULTS:
Thirty-two randomized controlled trials (278,694 participants) comparing 13 different interventions were included. Coxibs significantly reduced the risk of colorectal adenoma (risk ratio [RR]: 0.59, 95% confidence interval [CI]: 0.44-0.79, six trials involving 5486 participants), advanced adenoma (RR: 0.63, 95% CI: 0.43-0.92, four trials involving 4723 participants), and metachronous adenoma (RR: 0.58, 95% CI: 0.43-0.79, five trials involving 5258 participants) compared with placebo. Coxibs also significantly increased the risk of severe adverse events (RR: 1.29, 95% CI: 1.13-1.47, six trials involving 7109 participants). Other interventions, including Asp, folic acid, UDCA, vitamin D, and calcium, did not reduce the risk of colorectal adenoma in the general and high-risk populations compared with placebo.
CONCLUSIONS:
Considering the balance between benefits and harms, regular use of coxibs for prevention of colorectal adenoma was not supported by the current evidence. Benefit of low-dose Asp for chemoprevention of colorectal adenoma still requires further evidence.
REGISTRATION
PROSPERO, No. CRD42022296376.
Humans
;
Cyclooxygenase 2 Inhibitors
;
Calcium
;
Network Meta-Analysis
;
Vitamins
;
Colorectal Neoplasms/drug therapy*
;
Chemoprevention
;
Aspirin
;
Adenoma/prevention & control*
;
Vitamin D
3.Mechanism of action and exogenous supplementation of vitamin D in Crohn's disease.
Yu XIA ; Juan ZHOU ; Hong-Mei ZHAO ; Jie-Yu YOU
Chinese Journal of Contemporary Pediatrics 2023;25(8):870-876
Vitamin D can not only regulate calcium and phosphorus metabolism, but also exert an immunoregulatory effect. Vitamin D deficiency is common in patients with Crohn's disease (CD). Studies have shown that vitamin D is associated with CD and other autoimmune diseases and can improve the condition of patients with CD and promote their recovery by regulating intestinal immunity, repairing the intestinal mucosal barrier, inhibiting intestinal fibrosis, enhancing the response to infliximab, and regulating intestinal microbiota. Exogenous vitamin D supplementation can induce disease remission while increasing the serum level of vitamin D. However, only a few randomized, double-blind, and placebo-controlled trials have investigated the therapeutic effect of vitamin D in CD, and the optimal form of vitamin D supplementation, the specific dosage of vitamin D supplementation, and the optimal serum maintenance concentration of vitamin D remain to be clarified. This article mainly discusses the mechanism of action of vitamin D in CD and the beneficial effect of exogenous vitamin D supplementation on CD.
Humans
;
Calcium, Dietary
;
Crohn Disease/drug therapy*
;
Dietary Supplements
;
Infliximab
;
Vitamin D/therapeutic use*
4.In Vitro Degradation Behavior of Absorbable Interface Screws.
Xuezhen ZHU ; Weizhi LIU ; Zhenlong SUN ; Shunjie YAN ; Hua LIU ; Zhongli WANG
Chinese Journal of Medical Instrumentation 2023;47(6):598-601
The composite material PLGA compounded with β-tricalcium phosphate (β-TCP) was prepared by melt blending method, and the absorbable interface screw was prepared by injection molding process. Prepare PBS buffer that simulates human body, conduct in vitro degradation experiments on interface screws according to relevant national and industry standards, then test and characterize interface screws at different time points for degradation of intrinsic viscosity, average molecular weight distribution, mass loss, mechanical properties and thermal properties. According to the degradation performance-time curve, determine the time node at which the interface screw loses the mechanical properties. In this paper, the in vitro degradation behavior of interfacial screws prepared from PLGA and β-TCP composites was studied in detail, providing a reference and basis for the degradation behavior of absorbable products prepared from PLGA and β-TCP composites.
Humans
;
Polyesters
;
Materials Testing
;
Calcium Phosphates
;
Absorbable Implants
5.The mechanism of S100A7 inducing the migration and invasion in cervical cancer cells.
Tian TIAN ; Zhen HUA ; Yan KONG ; Ling Zhi WANG ; Xiang Yu LIU ; Yi HAN ; Xue Min ZHOU ; Zhu Mei CUI
Chinese Journal of Oncology 2023;45(5):375-381
Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.
Female
;
Humans
;
Uterine Cervical Neoplasms/pathology*
;
HeLa Cells
;
Fibronectins/metabolism*
;
Culture Media, Conditioned
;
Carcinoma, Squamous Cell/metabolism*
;
Adenocarcinoma
;
Cadherins/metabolism*
;
RNA, Messenger/metabolism*
;
Cell Movement
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
S100 Calcium Binding Protein A7/metabolism*
6.Immunology of a unique biological structure: the Echinococcus laminated layer.
Álvaro DÍAZ ; Anabella A BARRIOS ; Leticia GREZZI ; Camila MOUHAPE ; Stephen J JENKINS ; Judith E ALLEN ; Cecilia CASARAVILLA
Protein & Cell 2023;14(2):87-104
The larval stages of the cestode parasites belonging to the genus Echinococcus grow within internal organs of humans and a range of animal species. The resulting diseases, collectively termed echinococcoses, include major neglected tropical diseases of humans and livestock. Echinococcus larvae are outwardly protected by the laminated layer (LL), an acellular structure that is unique to this genus. The LL is based on a fibrillar meshwork made up of mucins, which are decorated by galactose-rich O-glycans. In addition, in the species cluster termed E. granulosus sensu lato, the LL features nano-deposits of the calcium salt of myo-inositol hexakisphosphate (Insp6). The main purpose of our article is to update the immunobiology of the LL. Major recent advances in this area are (i) the demonstration of LL "debris" at the infection site and draining lymph nodes, (ii) the characterization of the decoy activity of calcium Insp6 with respect to complement, (iii) the evidence that the LL mucin carbohydrates interact specifically with a lectin receptor expressed in Kupffer cells (Clec4F), and (iv) the characterization of what appear to be receptor-independent effects of LL particles on dendritic cells and macrophages. Much information is missing on the immunology of this intriguing structure: we discuss gaps in knowledge and propose possible avenues for research.
Animals
;
Calcium
;
Echinococcosis/parasitology*
;
Echinococcus/immunology*
;
Echinococcus granulosus/immunology*
;
Mucins
7.Ferulic acid enhances insulin secretion by potentiating L-type Ca2+ channel activation.
Katesirin RUAMYOD ; Wattana B WATANAPA ; Chanrit KAKHAI ; Pimchanok NAMBUNDIT ; Sukrit TREEWAREE ; Parin WONGSANUPA
Journal of Integrative Medicine 2023;21(1):99-105
OBJECTIVE:
To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion.
METHODS:
We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively.
RESULTS:
Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action.
CONCLUSION
This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic β cells by enhancing its voltage dependence of activation, leading to insulin secretion.
Rats
;
Animals
;
Insulin Secretion
;
Insulin/pharmacology*
;
Insulin-Secreting Cells/metabolism*
;
Coumaric Acids/metabolism*
;
Calcium/metabolism*
8.NKD1 promotes glucose uptake in colon cancer cells by activating YWHAE transcription.
Qian LIU ; Yuyang DAI ; Huayi YU ; Ying SHEN ; Jianzhong DENG ; Wenbin LU ; Jianhua JIN
Journal of Southern Medical University 2023;43(4):585-589
OBJECTIVE:
Bo investigate the regulatory relationship between NKD1 and YWHAE and the mechanism of NKD1 for promoting tumor cell proliferation.
METHODS:
HCT116 cells transfected with pcDNA3.0-NKD1 plasmid, SW620 cells transfected with NKD1 siRNA, HCT116 cells with stable NKD1 overexpression (HCT116-NKD1 cells), SW620 cells with nkd1knockout (SW620-nkd1-/- cells), and SW620-nkd1-/- cells transfected with pcDNA3.0-YWHAE plasmid were examined for changes in mRNA and protein expression levels of YWHAE using qRT-PCR and Western blotting. Chromatin immunoprecipitation (ChIP) assay was used to detect the binding of NKD1 to the promoter region of YWHAE gene. The regulatory effect of NKD1 on YWHAE gene promoter activity was analyzed by dual-luciferase reporter gene assay, and the interaction between NKD1 and YWHAE was analyzed with immunofluorescence assay. The regulatory effect of NKD1 on glucose uptake was examined in the tumor cells.
RESULTS:
In HCT116 cells, overexpression of NKD1 significantly enhanced the expression of YWHAE at both the mRNA and protein levels, while NKD1 knockout decreased its expression in SW620 cells (P < 0.001). ChIP assay showed that NKD1 protein was capable of binding to the YWHAE promoter sequence; dual luciferase reporter gene assay showed that NKD1 overexpression (or knockdown) in the colon cancer cells significantly enhanced (or reduced) the transcriptional activity of YWHAE promoter (P < 0.05). Immunofluorescence assay demonstrated the binding of NKD1 and YWHAE proteins in colon cancer cells. NKD1 knockout significantly reduced glucose uptake in colon cancer cells (P < 0.01), while YWHAE overexpression restored the glucose uptake in NKD1-knockout cells (P < 0.05).
CONCLUSION
NKD1 protein activates the transcriptional activity of YWHAE gene to promote glucose uptake in colon cancer cells.
Humans
;
Colonic Neoplasms
;
HCT116 Cells
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
RNA, Messenger
;
Glucose
;
Calcium-Binding Proteins/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
14-3-3 Proteins/metabolism*
9.Enhanced endoplasmic reticulum RyR1 receptor phosphorylation leads to diaphragmatic dysfunction in septic rats.
Songlin WU ; Xuexin LI ; Fasheng GUAN ; Jianguo FENG ; Jing JIA ; Jing LI ; Li LIU
Journal of Southern Medical University 2023;43(4):631-636
OBJECTIVE:
To explore the role of endoplasmic reticulum ryanodine receptor 1 (RyR1) expression and phosphorylation in sepsis- induced diaphragm dysfunction.
METHODS:
Thirty SPF male SD rats were randomized equally into 5 groups, including a sham-operated group, 3 sepsis model groups observed at 6, 12, or 24 h following cecal ligation and perforation (CLP; CLP-6h, CLP-12h, and CLP-24h groups, respectively), and a CLP-24h group with a single intraperitoneal injection of KN- 93 immediately after the operation (CLP-24h+KN-93 group). At the indicated time points, diaphragm samples were collected for measurement of compound muscle action potential (CMAP), fatigue index of the isolated diaphragm and fitted frequencycontraction curves. The protein expression levels of CaMK Ⅱ, RyR1 and P-RyR1 in the diaphragm were detected using Western blotting.
RESULTS:
In the rat models of sepsis, the amplitude of diaphragm CMAP decreased and its duration increased with time following CLP, and the changes were the most obvious at 24 h and significantly attenuated by KN-93 treatment (P < 0.05). The diaphragm fatigue index increased progressively following CLP (P < 0.05) irrespective of KN- 93 treatment (P>0.05). The frequency-contraction curve of the diaphragm muscle decreased progressively following CLP, and was significantly lower in CLP-24 h group than in CLP-24 h+KN-93 group (P < 0.05). Compared with that in the sham-operated group, RyR1 expression level in the diaphragm was significantly lowered at 24 h (P < 0.05) but not at 6 or 12 following CLP, irrespective of KN-93 treatment; The expression level of P-RyR1 increased gradually with time after CLP, and was significantly lowered by KN-93 treatment at 24 h following CLP (P < 0.05). The expression level of CaMKⅡ increased significantly at 24 h following CLP, and was obviously lowered by KN-93 treatment (P < 0.05).
CONCLUSION
Sepsis causes diaphragmatic dysfunction by enhancing CaMK Ⅱ expression and RyR1 receptor phosphorylation in the endoplasmic reticulum of the diaphragm.
Rats
;
Male
;
Animals
;
Diaphragm/metabolism*
;
Ryanodine Receptor Calcium Release Channel/metabolism*
;
Rats, Sprague-Dawley
;
Phosphorylation
;
Muscle Contraction/physiology*
;
Endoplasmic Reticulum
;
Sepsis/metabolism*
10.Effect of Erxian Decoction-containing serum on H_2O_2-induced proliferation and osteogenic differentiation of MC3T3-E1 cells via BK channels.
Ming-Shi REN ; Yu DING ; Zi-Han LI ; Yu-Meng WU ; Si-Min HUANG ; Lan-Lan LUO ; Yu-Jing ZHANG ; Min SHI ; Xun-Li XIA ; Bo LIU
China Journal of Chinese Materia Medica 2023;48(9):2522-2529
This study aimed to investigate the effects of Erxian Decoction(EXD)-containing serum on the proliferation and osteogenic differentiation of MC3T3-E1 cells under oxidative stress through BK channels. The oxidative stress model was induced in MC3T3-E1 cells by H_2O_2, and 3 mmol·L~(-1) tetraethylammonium(TEA) chloride was used to block the BK channels in MC3T3-E1 cells. MC3T3-E1 cells were divided into a control group, a model group, an EXD group, a TEA group, and a TEA+EXD group. After MC3T3-E1 cells were treated with corresponding drugs for 2 days, 700 μmol·L~(-1) H_2O_2 was added for treatment for another 2 hours. CCK-8 assay was used to detect cell proliferation activity. The alkaline phosphatase(ALP) assay kit was used to detect the ALP activity of cells. Western blot and real-time fluorescence-based quantitative PCR(RT-qPCR) were used to detect protein and mRNA expression, respectively. Alizarin red staining was used to detect the mineralization area of osteoblasts. The results showed that compared with the control group, the model group showed significantly blunted cell proliferation activity and ALP activity, reduced expression of BK channel α subunit(BKα), collagen Ⅰ(COL1), bone morphogenetic protein 2(BMP2), osteoprotegerin(OPG), and phosphorylated Akt, decreased mRNA expression levels of Runt-related transcription factor 2(RUNX2), BMP2, and OPG, and declining area of calcium nodules. EXD-containing serum could significantly potentiate the cell proliferation activity and ALP activity, up-regulate the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt, and forkhead box protein O1(FoxO1), promote the mRNA expression of RUNX2, BMP2, and OPG, and enlarge the area of calcium nodules. However, BK channel blockage by TEA reversed the effects of EXD-containing serum in promoting the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt and FoxO1, increasing the mRNA expression of RUNX2, BMP2, and OPG, and enlarging the area of calcium nodules. EXD-containing serum could improve the proliferation activity, osteogenic differentiation, and mineralization ability of MC3T3-E1 cells under oxidative stress, which might be related to the regulation of BK channels and downstream Akt/FoxO1 signaling pathway.
Osteogenesis
;
Core Binding Factor Alpha 1 Subunit/pharmacology*
;
Large-Conductance Calcium-Activated Potassium Channels/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Calcium/metabolism*
;
Cell Differentiation
;
RNA, Messenger/metabolism*
;
Cell Proliferation
;
Osteoblasts

Result Analysis
Print
Save
E-mail